\
J

ALWAYS LEARNING PEARSON

HOW TO PROGRAM
‘ . EIGHTH EDITION

i n introduction to C++

This page intentionally left blank

HOW TO PROGRAM

EIGHTH EDITION
GLOBAL EDITION

with an introduction to C++

Paul Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

Global Edition contributions by
Piyali Sengupta

DEITEI®

PEARSON

Boston Columbus Hoboken Indianapolis New York San Francisco
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal
Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Vice President and Editorial Director, ECS: Marcia J. Horton
Executive Editor: Tracy Johnson (Dunkelberger)

Editorial Assistant: Kelsey Loanes

Assistant Acquisitions Editor, Global Editions: Aditee Agarwal
Program Manager: Carole Snyder

Project Manager: Robert Engelhardt

Project Editor, Global Editions: K.K. Neelakantan

Media Team Lead: Steve Wright

R&P Manager: Rachel Youdelman

R&P Senior Project Manager: William Opaluch

Senior Operations Specialist: Maura Zaldivar-Garcia

Senior Manufacturing Controller, Global Editions: Kay Holman
Inventory Manager: Bruce Boundy

Marketing Manager: Demetrius Hall

Product Marketing Manager: Bram Van Kempen

Media Production Manager, Global Editions: Vikram Kumar
Marketing Assistant: Jon Bryant

Cover Designer: Chuti Prasertsith / Michael Rutkowski / Marta Samsel
Cover Art: © Igoror / Shutterstock

Pearson Education Limited
Edinburgh Gate

Harlow

Essex CM20 2JE

England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2016

The rights of Paul Deitel and Harvey Deitel to be identified as the authors of this work have been asserted by them in

accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled C How to Program: with an introduction to C++,8" edition,
ISBN 978-0-13-397689-2, by Paul Deitel and Harvey Deitel published by Pearson Education © 2016.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any

form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written
permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright
Licensing Agency Ltd, Saffron House, 610 Kirby Street, London ECIN 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not

vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks

imply any affiliation with or endorsement of this book by such owners.
British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library
10987654321

ISBN 10: 1-292-11097-X
ISBN 13: 978-1-292-11097-4

Typeset by GEX Publishing Services
Printed in Malaysia

In memory of Dennis Ritchie,
creator of the C programming language
and co-creator of the UNIX operating system.

Paul and Harvey Deitel

Trademarks

DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates,
Inc.

Apple, Xcode, Swift, Objective-C, iOS and OS X are trademarks or registered trademarks of Apple, Inc.
Java is a registered trademark of Oracle and/or its affiliates.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All
such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/
or its respective suppliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied or statutory, fitness
for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective sup-
pliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typograph-
ical errors. Changes are periodically added to the information herein. Microsoft and/or its respective sup-
pliers may make improvements and/or changes in the product(s) and/or the program(s) described herein
at any time. Partial screen shots may be viewed in full within the software version specified.

Other names may be trademarks of their respective owners.

Contents

Appendices F, G and H are PDF documents posted online at the book’s Companion
Website (located at www.pearsonglobaleditions.com/deitel).

Preface 23

I Introduction to Computers, the Internet and

the Web 33
1.1 Introduction 34
1.2 Hardware and Software 35
1.2.1 Moore’s Law 35
1.2.2 Computer Organization 36
1.3 Data Hierarchy 37
1.4 Machine Languages, Assembly Languages and High-Level Languages 40
1.5 The C Programming Language 41
1.6 C Standard Library 42
1.7 C++ and Other C-Based Languages 43
1.8 Object Technology 44
1.8.1 The Automobile as an Object 45
1.8.2 Methods and Classes 45
1.8.3 Instantiation 45
1.8.4 Reuse 45
1.8.5 Messages and Method Calls 46
1.8.6 Attributes and Instance Variables 46
1.8.7 Encapsulation and Information Hiding 46
1.8.8 Inheritance 46
1.9 Typical C Program-Development Environment 47
1.9.1 DPhase 1: Creating a Program 48
1.9.2 Phases 2 and 3: Preprocessing and Compiling a C Program 48
1.9.3 Phase 4: Linking 48
1.9.4 Phase 5: Loading 49
1.9.5 Phase 6: Execution 49
1.9.6 Problems That May Occur at Execution Time 49
1.9.7 Standard Input, Standard Output and Standard Error Streams 49
1.10 Test-Driving a C Application in Windows, Linux and Mac OS X 49

1.10.1 Running a C Application from the Windows Command Prompt 50
1.10.2 Running a C Application Using GNU C with Linux 53

1.13
1.14

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10
3.11

3.12
3.13

4.1

Contents

1.10.3 Running a C Application Using the Teminal on Mac OS X

Operating Systems

1.11.1 Windows—A Proprietary Operating System

1.11.2 Linux—An Open-Source Operating System

1.11.3 Apple’s Mac OS X; Apple’s iOS for iPhone®, iPad® and
iPod Touch® Devices

1.11.4 Google’s Android

The Internet and World Wide Web

1.12.1 The Internet: A Network of Networks

1.12.2 The World Wide Web: Making the Internet User-Friendly

1.12.3 Web Services

1124 Ajax

1.12.5 The Internet of Things

Some Key Software Terminology

Keeping Up-to-Date with Information Technologies

Introduction to C Programming

Introduction

A Simple C Program: Printing a Line of Text
Another Simple C Program: Adding Two Integers
Memory Concepts

Arithmetic in C

Decision Making: Equality and Relational Operators
Secure C Programming

Structured Program Development in C

Introduction

Algorithms

Pseudocode

Control Structures

The i f Selection Statement

The if...e1se Selection Statement

The while Iteration Statement

Formulating Algorithms Case Study 1: Counter-Controlled Iteration
Formulating Algorithms with Top-Down, Stepwise Refinement
Case Study 2: Sentinel-Controlled Iteration

Formulating Algorithms with Top-Down, Stepwise Refinement
Case Study 3: Nested Control Statements

Assignment Operators

Increment and Decrement Operators

Secure C Programming

C Program Control

Introduction

56
59
59
59

60
60
61
61
61
62
64
64
64
66

71

72
72
76
80
81
85
89

101

102
102
102
103
105
106
110
111

114

120
124
125
127

145
146

Contents 9

4.2 Tteration Essentials 146
4.3 Counter-Controlled Iteration 147
4.4 for Iteration Statement 148
4.5 for Statement: Notes and Observations 151
4.6 Examples Using the for Statement 152
4.7 switch Multiple-Selection Statement 155
4.8 do...while Iteration Statement 161
49 break and continue Statements 162
4.10 Logical Operators 164
4.11 Confusing Equality (==) and Assignment (=) Operators 167
4.12 Structured Programming Summary 169
4.13 Secure C Programming 174
5 C Functions 189
5.1 Introduction 190
5.2 Modularizing Programs in C 190
5.3 Math Library Functions 191
5.4 Functions 193
5.5 Function Definitions 193

5.5.1 square Function 194

5.5.2 maximum Function 197
5.6 Function Prototypes: A Deeper Look 198
5.7 Function Call Stack and Stack Frames 200
5.8 Headers 204
5.9 Passing Arguments By Value and By Reference 205
5.10 Random Number Generation 206
5.11 Example: A Game of Chance; Introducing enum 210
5.12 Storage Classes 214
5.13 Scope Rules 216
5.14 Recursion 219
5.15 Example Using Recursion: Fibonacci Series 222
5.16 Recursion vs. Iteration 226
5.17 Secure C Programming 227

6 CArrays 246

6.1 Introduction 247

6.2 Arrays 247

6.3 Defining Arrays 249

6.4 Array Examples 249
6.4.1 Defining an Array and Using a Loop to Set the Array’s

Element Values 249

6.4.2 Initializing an Array in a Definition with an Initializer List 250

6.4.3 Specifying an Array’s Size with a Symbolic Constant and
Initializing Array Elements with Calculations 252

10

6.5

6.6
6.7
6.8
6.9
6.10

6.12
6.13

7.1
7.2
7.3
7.4
7.5

7.6
7.7
7.8

Contents

6.4.4
6.4.5
6.4.6
6.4.7

Summing the Elements of an Array

Using Arrays to Summarize Survey Results

Graphing Array Element Values with Histograms

Rolling a Die 60,000,000 Times and Summarizing the Results
in an Array

Using Character Arrays to Store and Manipulate Strings

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6

Initializing a Character Array with a String

Initializing a Character Array with an Intalizer List of Characters
Accessing the Characters in a String

Inputting into a Character Array

Outputting a Character Array That Represents a String
Demonstrating Character Arrays

Static Local Arrays and Automatic Local Arrays

Passing Arrays to Functions

Sorting Arrays

Case Study: Computing Mean, Median and Mode Using Arrays
Searching Arrays

6.10.1 Searching an Array with Linear Search

6.10.2 Searching an Array with Binary Search
Multidimensional Arrays

6.11.1

Hlustrating a Double-Subcripted Array

6.11.2 Initializing a Double-Subcripted Array

6.11.3 Setting the Elements in One Row

6.11.4 Totaling the Elements in a Two-Dimensional Array
6.11.5 Two-Dimensonal Array Manipulations
Variable-Length Arrays

Secure C Programming

C Pointers

Introduction

Pointer Variable Definitions and Initialization
Pointer Operators

Passing Arguments to Functions by Reference
Using the const Qualifier with Pointers

7.5.1
7.5.2

7.5.3
7.5.4

Converting a String to Uppercase Using a Non-Constant Pointer
to Non-Constant Data

Printing a String One Character at a Time Using a Non-Constant

Pointer to Constant Data

Attempting to Modify a Constant Pointer to Non-Constant Data

Attempting to Modify a Constant Pointer to Constant Data

Bubble Sort Using Pass-by-Reference
sizeof Operator
Pointer Expressions and Pointer Arithmetic

7.8.1
7.8.2

Allowed Operators for Pointer Arithmetic
Aiming a Pointer at an Array

253
254
256

257
257
258
258
258
258
259
259
260
262
266
268
273
273
274
278
278
279
281
281
282
285
288

306

307
308
309
311
315

316

317
319
320
321
324
327
327
327

Contents 11

7.8.3 Adding an Integer to a Pointer 328
7.8.4 Subtracting an Integer from a Pointer 328
7.8.5 Incrementing and Decrementing a Pointer 328
7.8.6 Subtracting One Pointer from Another 329
7.8.7 Assigning Pointers to One Another 329
7.8.8 Pointer to void 329
7.8.9 Comparing Pointers 329
7.9 Relationship between Pointers and Arrays 330
7.9.1 Pointer/Offset Notation 330
7.9.2 Pointer/Index Notation 331
7.9.3 Cannot Modify an Array Name with Pointer Arithmetic 331
7.9.4 Demonstrating Pointer Indexing and Offsets 331
7.9.5 Suing Copying with Arrays and Pointers 332
7.10 Arrays of Pointers 334
7.11 Case Study: Card Shuffling and Dealing Simulation 335
7.12 Pointers to Functions 340
7.12.1 Sorting in Ascending or Descending Order 340
7.12.2 Using Function Pointers to Create a Menu-Driven System 343
7.13 Secure C Programming 345
8 C Characters and Strings 365
8.1 Introduction 366
8.2 Fundamentals of Strings and Characters 366
8.3 Character-Handling Library 368
8.3.1 Functions isdigit, isalpha, isalnumand isxdigit 368
8.3.2 Functions islower, isupper, tolower and toupper 371
8.3.3 Functions isspace, iscntrl, ispunct, isprint and isgraph 372
8.4 String-Conversion Functions 374
8.4.1 Function strtod 374
8.4.2 Function strtol 375
8.4.3 Function strtoul 376
8.5 Standard Input/Output Library Functions 376
8.5.1 Functions fgets and putchar 377
8.5.2 Function getchar 378
8.5.3 Function sprintf 379
8.5.4 Function sscanf 380
8.6 String-Manipulation Functions of the String-Handling Library 381
8.6.1 Functions strcpy and strncpy 382
8.6.2 Functions strcat and strncat 382
8.7 Comparison Functions of the String-Handling Library 383
8.8 Search Functions of the String-Handling Library 385
8.8.1 Function strchr 386
8.8.2 Function strcspn 387
8.8.3 Function strpbrk 387

8.8.4 Function strrchr 388

12

8.9

8.10

8.11

9.1
9.2
9.3
9.4
9.5

9.6
9.7
9.8

9.9

9.10
9.11

Contents

8.8.5 Function strspn

8.8.6 Function strstr

8.8.7 Function strtok

Memory Functions of the String-Handling Library
8.9.1 Function memcpy

8.9.2 Function memmove

8.9.3 Function memcmp

8.9.4 Function memchr

8.9.5 Function memset

Other Functions of the String-Handling Library
8.10.1 Function strerror

8.10.2 Function strlen

Secure C Programming

C Formatted Input/Output

Introduction

Streams

Formatting Output with printf
Printing Integers

Printing Floating-Point Numbers

9.5.1 Conversion Specifiers e, E and f
9.5.2 Conversion Specifiers g and G

9.5.3 Demonstrating Floating-Point Conversion Specifiers

Printing Strings and Characters
Other Conversion Specifiers
Printing with Field Widths and Precision

9.8.1 Specifying Field Widths for Printing Integers
9.8.2 Specifying Precisions for Integers, Floating-Point Numbers

and Strings
9.8.3 Combining Field Widths and Precisions
Using Flags in the printf Format Control String
9.9.1 Right and Left Justification

9.9.2 Printing Positive and Negative Numbers with and without

the + Flag
9.9.3 Using the Space Flag
9.9.4 Using the # Flag
9.9.5 Using the 0 Flag
Printing Literals and Escape Sequences
Reading Formatted Input with scanf
9.11.1 scanf Syntax
9.11.2 scanf Conversion Specifiers
9.11.3 Reading Integers with scanf

9.11.4 Reading Floating-Point Numbers with scanf

9.11.5 Reading Characters and Strings with scanf
9.11.6 Using Scan Sets with scanf

389
389
390
391
392
393
394
394
395
395
396
396
397

409

410
410
410
411
412
413
413
414
414
415
416
416

417
418
419
419

420
420
421
421
422
422
423
423
424
425
425
426

Contents 13

9.11.7 Using Field Widths with scanf 427
9.11.8 Skipping Characters in an Input Stream 428
9.12 Secure C Programming 429

10 C Structures, Unions, Bit Manipulation and

Enumerations 436
10.1 Introduction 437
10.2 Structure Definitions 437
10.2.1 Self-Referential Structures 438
10.2.2 Defining Variables of Structure Types 439
10.2.3 Structure Tag Names 439
10.2.4 Operations That Can Be Performed on Structures 439
10.3 Initializing Structures 440
10.4 Accessing Structure Members with . and -> 440
10.5 Using Structures with Functions 442
10.6 typedef 443
10.7 Example: High-Performance Card Shuffling and Dealing Simulation 443
10.8 Unions 446
10.8.1 Union Declarations 446
10.8.2 Operations That Can Be Performed on Unions 447
10.8.3 Initializing Unions in Declarations 447
10.8.4 Demonstrating Unions 447
10.9 Bitwise Operators 448
10.9.1 Displaying an Unsigned Integer in Bits 449
10.9.2 Making Function displayBits More Generic and Portable 451

10.9.3 Using the Bitwise AND, Inclusive OR, Exclusive OR and
Complement Operators 452
10.9.4 Using the Bitwise Left- and Right-Shift Operators 455
10.9.5 Bitwise Assignment Operators 456
10.10 Bit Fields 457
10.10.1 Defining Bit Fields 457
10.10.2 Using Bit Fields to Represent a Card’s Face, Suit and Color 458
10.10.3 Unnamed Bit Fields 460
10.11 Enumeration Constants 460
10.12 Anonymous Structures and Unions 462
10.13 Secure C Programming 462
I I CFile Processing 473
11.1 Introduction 474
11.2 Files and Streams 474
11.3 Creating a Sequential-Access File 475
11.3.1 Pointer to a FILE 477
11.3.2 Using fopen to Open the File 477

11.3.3 Using feof to Check for the End-of-File Indicator 477

14 Contents

11.3.4 Using fprintf to Write to the File 478
11.3.5 Using fclose to Close the File 478
11.3.6 File Open Modes 479
11.4 Reading Data from a Sequential-Access File 481
11.4.1 Resetting the File Position Pointer 482
11.4.2 Credit Inquiry Program 482
11.5 Random-Access Files 486
11.6 Creating a Random-Access File 486
11.7 Weriting Data Randomly to a Random-Access File 488
11.7.1 DPositioning the File Position Pointer with fseek 490
11.7.2 Error Checking 491
11.8 Reading Data from a Random-Access File 491
11.9 Case Study: Transaction-Processing Program 493
11.10 Secure C Programming 498
12 C Data Structures 509
12.1 Introduction 510
12.2 Self-Referential Structures 511
12.3 Dynamic Memory Allocation 511
12.4 Linked Lists 512
12.4.1 Function insert 518
12.4.2 Function delete 519
12.4.3 Function printList 521
12.5 Stacks 521
12.5.1 Function push 525
12.5.2 Function pop 526
12.5.3 Applications of Stacks 526
12.6 Queues 527
12.6.1 Function enqueue 531
12.6.2 Function dequeue 532
12.7 Trees 533
12.7.1 Function insertNode 536
12.7.2 Traversals: Functions inOrder, preOrder and postOrder 537
12.7.3 Duplicate Elimination 538
12.7.4 Binary Tree Search 538
12.7.5 Other Binary Tree Operations 538
12.8 Secure C Programming 538
I3 CPreprocessor 550
13.1 Introduction 551
13.2 #include Preprocessor Directive 551
13.3 #define Preprocessor Directive: Symbolic Constants 552
13.4 #define Preprocessor Directive: Macros 553

13.4.1 Macro with One Argument 553

13.5

13.6
13.7
13.8
13.9
13.10
13.11

14

14.1
14.2

14.3
14.4
14.5

14.6
14.7
14.8
14.9
14.10

Contents

13.4.2 Macro with Two Arguments

13.4.3 Macro Continuation Character

13.4.4 #undef Preprocessor Directive

13.4.5 Standard Library Functions and Macros

13.4.6 Do Not Place Expressions with Side Effects in Macros
Conditional Compilation

13.5.1 #if...#endif Preprocessor Directive

13.5.2 Commenting Out Blocks of Code with #if...#endif
13.5.3 Conditionally Compiling Debugging Code

#error and #pragma Preprocessor Directives

and ## Operators

Line Numbers

Predefined Symbolic Constants

Assertions

Secure C Programming

Other C Topics

Introduction

Redirecting I/O

14.2.1 Redirecting Input with <

14.2.2 Redirecting Input with |

14.2.3 Redirecting Output

Variable-Length Argument Lists

Using Command-Line Arguments

Compiling Multiple-Source-File Programs

14.5.1 extern Declarations for Global Variables in Other Files
14.5.2 Function Prototypes

14.5.3 Restricting Scope with static

14.5.4 Makefiles

Program Termination with exit and atexit

Suffixes for Integer and Floating-Point Literals

Signal Handling

Dynamic Memory Allocation: Functions calloc and realloc
Unconditional Branching with goto

I5 C++ as a Better C; Introducing Object

15.1
15.2
15.3

Technology

Introduction

C++

A Simple Program: Adding Two Integers
15.3.1 Addition Program in C++
15.3.2 <iostream> Header

15.3.3 main Function

15.3.4 Variable Declarations

15

554
554
554
554
555
555
555
555
556
556
556
557
557
558
558

563

564
564
564
565
565
565
567
569
569
569
570
570
570
572
572
575
575

581

582
582
583
583
584
584
584

16

15.4
15.5
15.6
15.7
15.8

15.9

15.10
15.11
15.12
15.13

15.14

15.15

15.16

16

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

Contents

15.3.5 Standard Output Stream and Standard Input Stream Objects
15.3.6 std::end1 Stream Manipulator

15.3.7 std:: Explained

15.3.8 Concatenated Stream Outputs

15.3.9 return Statement Not Required in main

15.3.10 Operator Overloading

C++ Standard Library

Header Files

Inline Functions

C++ Keywords

References and Reference Parameters

15.8.1 Reference Parameters

15.8.2 DPassing Arguments by Value and by Reference

15.8.3 References as Aliases within a Function

15.8.4 Returning a Reference from a Function

15.8.5 Error Messages for Uninitialized References

Empty Parameter Lists

Default Arguments

Unary Scope Resolution Operator

Function Overloading

Function Templates

15.13.1 Defining a Function Template

15.13.2 Using a Function Template

Introduction to Object Technology and the UML

15.14.1 Basic Object Technology Concepts

15.14.2 Classes, Data Members and Member Functions
15.14.3 Object-Oriented Analysis and Design

15.14.4 The Unified Modeling Language

Introduction to C++ Standard Library Class Template vector
15.15.1 Problems Associated with C-Style Pointer-Based Arrays
15.15.2 Using Class Template vector

15.15.3 Exception Handling: Processing an Out-of-Range Index
Wrap-Up

Introduction to Classes, Objects and Strings

Introduction

Defining a Class with a Member Function

Defining a Member Function with a Parameter

Data Members, set Member Functions and ger Member Functions
Initializing Objects with Constructors

Placing a Class in a Separate File for Reusability

Separating Interface from Implementation

Validating Data with set Functions

Wrap-Up

584
585
585
585
585
585
586
586
588
590
591
591
592
594
595
596
596
596
598
599
602
602
603
605
605
606
607
608
608
608
609
613
615

621

622
622
625
629
634
638
642
647
652

Contents 17

I 7 Classes: A Deeper Look; Throwing Exceptions 659

17.1 Introduction 660
17.2 Time Class Case Study 661
17.3 Class Scope and Accessing Class Members 667
17.4 Access Functions and Urtility Functions 668
17.5 Time Class Case Study: Constructors with Default Arguments 669
17.6 Destructors 675
17.7 When Constructors and Destructors Are Called 675
17.8 Time Class Case Study: A Subtle Trap—Returning a Reference or a

Pointer to a private Data Member 679
17.9 Default Memberwise Assignment 682
17.10 const Objects and const Member Functions 684
17.11 Composition: Objects as Members of Classes 686
17.12 friend Functions and friend Classes 692
17.13 Using the this Pointer 694
17.14 static Class Members 700
17.15 Wrap-Up 705
I8 Operator Overloading; Class string 715
18.1 Introduction 716
18.2 Using the Overloaded Operators of Standard Library Class string 717
18.3 Fundamentals of Operator Overloading 720
18.4 Ovetloading Binary Operators 721
18.5 Overloading the Binary Stream Insertion and Stream Extraction Operators 722
18.6 Overloading Unary Operators 726
18.7 Overloading the Unary Prefix and Postfix ++ and -- Operators 727
18.8 Case Study: A Date Class 728
18.9 Dynamic Memory Management 733
18.10 Case Study: Array Class 735

18.10.1 Using the Array Class 736

18.10.2 Array Class Definition 740
18.11 Operators as Member vs. Non-Member Functions 748
18.12 Converting Between Types 748
18.13 explicit Constructors and Conversion Operators 750
18.14 Ovetloading the Function Call Operator () 752
18.15 Wrap-Up 753

19 Object-Oriented Programming: Inheritance 764

19.1 Introduction 765
19.2 Base Classes and Derived Classes 765
19.3 Relationship between Base and Derived Classes 768

19.3.1 Creating and Using a CommissionEmployee Class 768

19.3.2 Creating a BasePTusCommissionEmployee Class Without
Using Inheritance 773

19.4
19.5
19.6
19.7

20

20.1
20.2
20.3

20.4
20.5
20.6

20.7
20.8

20.9

2]

21.1
21.2

21.3

21.4

Contents

19.3.3 Creating a CommissionEmployee—BasePlusCommissionEmployee
Inheritance Hierarchy

19.3.4 CommissionEmployee—BasePlusCommissionEmployee Inheritance
Hierarchy Using protected Data

19.3.5 CommissionEmployee—BasePlusCommissionEmployee Inheritance
Hierarchy Using private Data

Constructors and Destructors in Derived Classes

public, protected and private Inheritance

Software Engineering with Inheritance

Wrap-Up

Object-Oriented Programming: Polymorphism

Introduction

Introduction to Polymorphism: Polymorphic Video Game

Relationships Among Objects in an Inheritance Hierarchy

20.3.1 Invoking Base-Class Functions from Derived-Class Objects

20.3.2 Aiming Derived-Class Pointers at Base-Class Objects

20.3.3 Derived-Class Member-Function Calls via Base-Class Pointers

20.3.4 Virtual Functions and Virtual Destructors

Type Fields and switch Statements

Abstract Classes and Pure virtual Functions

Case Study: Payroll System Using Polymorphism

20.6.1 Creating Abstract Base Class Employee

20.6.2 Creating Concrete Derived Class SalariedEmployee

20.6.3 Creating Concrete Derived Class CommissionEmployee

20.6.4 Creating Indirect Concrete Derived Class
BasePlusCommissionEmpTloyee

20.6.5 Demonstrating Polymorphic Processing

(Optional) Polymorphism, Virtual Functions and Dynamic Binding

“Under the Hood”

Case Study: Payroll System Using Polymorphism and Runtime Type

Information with Downcasting, dynamic_cast, typeid and type_info

Wrap-Up

Stream Input/Output: A Deeper Look

Introduction

Streams

21.2.1 Classic Streams vs. Standard Streams

21.2.2 iostream Library Headers

21.2.3 Stream Input/Output Classes and Objects
Stream Output

21.3.1 Output of char * Variables

21.3.2 Character Output Using Member Function put
Stream Input

21.4.1 get and getline Member Functions

779
783

786
791
793
794
794

799

800
801
801
802
805
806
808
815
815
817
818
822
824

826
828

832

835
839

844
845
846
846
847
847
849
850
850
851
851

—
A\ N

21.7

21.8
21.9
21.10

22

22.1
22.2
22.3
22.4
22.5
22.6
22.7
22.8
229
22.10
22.11

23

23.1
23.2
23.3
23.4
23.5
23.6
23.7

Contents 19

21.4.2 dstream Member Functions peek, putback and ignore 854
21.4.3 Type-Safe /O 854
Unformatted I/O Using read, write and gcount 854
Introduction to Stream Manipulators 855
21.6.1 Integral Stream Base: dec, oct, hex and setbase 856
21.6.2 Floating-Point Precision (precision, setprecision) 856
21.6.3 Field Width (width, setw) 858
21.6.4 User-Defined Output Stream Manipulators 859
Stream Format States and Stream Manipulators 860
21.7.1 Trailing Zeros and Decimal Points (showpoint) 861
21.7.2 Justification (Teft, right and internal) 862
21.7.3 DPadding (fi11, setfill) 864
21.7.4 Integral Stream Base (dec, oct, hex, showbase) 865
21.7.5 Floating-Point Numbers; Scientific and Fixed Notation

(scientific, fixed) 866
21.7.6 Uppercase/Lowercase Control (uppercase) 867
21.7.7 Specifying Boolean Format (boolalpha) 867
21.7.8 Setting and Resetting the Formar State via Member F

unction flags 868
Stream Error States 869
Tying an Output Stream to an Input Stream 872
Wrap-Up 872
Exception Handling: A Deeper Look 881
Introduction 882
Example: Handling an Attempt to Divide by Zero 882
Rethrowing an Exception 888
Stack Unwinding 889
When to Use Exception Handling 891
Constructors, Destructors and Exception Handling 892
Exceptions and Inheritance 893
Processing new Failures 893
Class unique_ptr and Dynamic Memory Allocation 896
Standard Library Exception Hierarchy 899
Wrap-Up 900
Introduction to Custom Templates 906
Introduction 907
Class Templates 907
Function Template to Manipulate a Class-Template Specialization Object 912
Nontype Parameters 914
Default Arguments for Template Type Parameters 914
Overloading Function Templates 915

Wrap-Up 915

20

C.1
C2
C3
C4
C5
Co6

D.1
D.2
D.3
D.4
D.5

E.1
E.2
E3
E.4
E.5
E.6
E.7
E.8

E9

Contents

C and C++ Operator Precedence Charts

ASCII Character Set

Number Systems

Introduction

Abbreviating Binary Numbers as Octal and Hexadecimal Numbers
Converting Octal and Hexadecimal Numbers to Binary Numbers
Converting from Binary, Octal or Hexadecimal to Decimal
Converting from Decimal to Binary, Octal or Hexadecimal

Negative Binary Numbers: Two’s Complement Notation

Sorting: A Deeper Look

Introduction
Big O Notation
Selection Sort
Insertion Sort

Merge Sort

918

922

923

924
927
928
928
929
931

936

937
937
938
942
945

Multithreading and Other CI1 and C99 Topics 956

Introduction

New C99 Headers

Designated Initializers and Compound Literals
Type bool

Implicit int in Function Declarations
Complex Numbers

Additions to the Preprocessor

Other C99 Features

E.8.1 Compiler Minimum Resource Limits
E.8.2 The restrict Keyword

E.8.3 Reliable Integer Division

E.8.4 Flexible Array Members

E.8.5 Relaxed Constraints on Aggregate Initialization
E.8.6 Type Generic Math

E.8.7 Inline Functions

E.8.8 Return Without Expression

E.8.9 __func__ Predefined Identifier
E.8.10 va_copy Macro

New Features in the C11 Standard

E9.1 New Cl11 Headers

E.9.2 Multithreading Support

E.9.3 quick_exit function

957
958
959
961
963
964
965
966
966
967
967
967
968
968
968
969
969
969
969
970
970
978

Contents 21

E.9.4 Unicode® Support 978
E.9.5 _Noreturn Function Specifier 978
E.9.6 Type-Generic Expressions 978
E.9.7 Annex L: Analyzability and Undefined Behavior 979
E.9.8 Memory Alignment Control 979
E.9.9 Static Assertions 979
E.9.10 Floating-Point Types 980
E.10 Web Resources 980
Appendices on the Web 983
Index 984

Appendices F, G and H are PDF documents posted online at the book’s Companion
Website (located at www.pearsonglobaleditions.com/deitel).

F Using the Visual Studio Debugger
G Using the GNU gdb Debugger

H Using the Xcode Debugger

This page intentionally left blank

Preface

Welcome to the C programming language and to C How to Program, Eighth Edition! This
book presents leading-edge computing technologies for college students, instructors and
software-development professionals.

At the heart of the book is the Deitel signature “live-code approach”—we present con-
cepts in the context of complete working programs, rather than in code snippets. Each
code example is followed by one or more sample executions. Read the online Before You
Begin section at

http://www.deitel.com/books/chtp8/chtp8_BYB.pdf

to learn how to set up your computer to run the hundreds of code examples. All the source
code is available at

www . pearsonglobaleditions.com/deitel

Use the source code we provide to run every program as you study it.

We believe that this book and its support materials will give you an informative, chal-
lenging and entertaining introduction to C. As you read the book, if you have questions,
send an e-mail to deitel@deitel.com—we’ll respond promptly. For book updates, visit
www.deitel.com/books/chtp8/, join our social media communities:

. Facebook®—http ://facebook.com/DeitelFan
e Twitter®—adeitel
e LinkedIn®—http://1inkedin.com/company/deitel-&-associates
¢ YouTube™ _—http://youtube.com/DeitelTV
* Google+™—http://google.com/+DeitelFan
and register for the Deitel® Buzz Online e-mail newsletter at:

http://www.deitel.com/newsTletter/subscribe.html

New and Updated Features
Here are some key features of C How to Program, 8/e:

* Integrated More Capabilities of the C11 and C99 standards. Support for the C11
and C99 standards varies by compiler. Microsoft Visual C++ supports a subset of
the features that were added to C in C99 and C11—primarily the features that
are also required by the C++ standard. We incorporated several widely supported
C11 and C99 features into the book’s early chapters, as appropriate for introduc-

24

Preface

tory courses and for the compilers we used in this book. Appendix E, Multi-
threading and Other C11 and C99 Topics, presents more advanced features
(such as multithreading for today’s increasingly popular multi-core architectures)
and various other features that are not widely supported by today’s C compilers.

All Code Tested on Linux, Windows and OS X. We retested all the example and
exercise code using GNU gec on Linux, Visual C++ on Windows (in Visual Stu-
dio 2013 Community Edition) and LLVM in Xcode on OS X.

Updated Chapter 1. The new Chapter 1 engages students with updated intrigu-
ing facts and figures to get them excited about studying computers and computer
programming. The chapter includes current technology trends and hardware dis-
cussions, the data hierarchy, social networking and a table of business and tech-
nology publications and websites that will help you stay up to date with the latest
technology news and trends. We've included updated test-drives that show how
to run a command-line C program on Linux, Microsoft Windows and OS X. We
also updated the discussions of the Internet and web, and the introduction to ob-
ject technology.

Updated Coverage of C++ and Object-Oriented Programming. We updated
Chapters 15-23 on object-oriented programming in C++ with material from our
textbook C++ How to Program, 9/e, which is up-to-date with the C++11 standard.

Updated Code Style. We removed the spacing inside parentheses and square
brackets, and toned down our use of comments a bit. We also added parentheses
to certain compound conditions for clarity.

Variable Declarations. Because of improved compiler support, we were able to
move variable declarations closer to where they’re first used and define for-loop
counter-control variables in each for’s initialization section.

Summary Bullets. We removed the end-of-chapter terminology lists and updated
the detailed section-by-section, bullet-list summaries with bolded key terms and,
for most, page references to their defining occurrences.

Use of Standard Terminology. To help students prepare to work in industry
wortldwide, we audited the book against the C standard and upgraded our termi-
nology to use C standard terms in preference to general programming terms.

Online Debugger Appendices. We've updated the online GNU gdb and Visual
C++® debugging appendices, and added an Xcode® debugging appendix.

Additional Exercises. We updated various exercises and added some new ones,
including one for the Fisher-Yates unbiased shuffling algorithm in Chapter 10.

Other Features
Other features of C How to Program, 8/e include:

Secure C Programming Sections. Many of the C chapters end with a Secure C
Programming Section. We've also posted a Secure C Programming Resource
Center at waww.deitel.com/SecureC/. For more details, see the section “A Note
About Secure C Programming” on the next page.

A Note About Secure C Programming 25

» Focus on Performance Issues. C (and C++) are favored by designers of performance-
intensive systems such as operating systems, real-time systems, embedded systems
and communications systems, so we focus intensively on performance issues.

* “Making a Difference” Contemporary Exercises. We encourage you to use com-
puters and the Internet to research and solve significant problems. These exercises
are meant to increase awareness of important issues the world is facing. We hope
you’ll approach them with your own values, politics and beliefs.

* Sorting: A Deeper Look. Sorting places data in order, based on one or more sort
keys. We begin our sorting presentation in Chapter 6 with a simple algorithm—
in Appendix D, we present a deeper look. We consider several algorithms and
compare them with regard to their memory consumption and processor de-
mands. For this purpose, we present a friendly introduction to Big O notation,
which indicates how hard an algorithm may have to work to solve a problem.
Through examples and exercises, Appendix D discusses the selection sort, inser-
tion sort, recursive merge sort, recursive selection sort, bucket sort and recursive
Quicksort. Sorting is an intriguing problem because different sorting techniques
achieve the same final result but they can vary hugely in their consumption of
memory, CPU time and other system resources.

» Titled Programming Exercises. Most of the programming exercises are titled to
help instructors conveniently choose assignments appropriate for their students.

* Order of Evaluation. We caution the reader about subtle order of evaluation issues.

o C++-Style // Comments. We use the newer, more concise C++-style // com-
ments in preference to Cs older style /*...*/ comments.

A Note About Secure C Programming

Throughout this book, we focus on C programming fundamentals. When we write each
How to Program book, we search the corresponding language’s standards document for the
features that we feel novices need to learn in a first programming course, and features that
professional programmers need to know to begin working in that language. We also cover
computer-science and software-engineering fundamentals for novices—our core audience.

Industrial-strength coding techniques in any programming language are beyond the
scope of an introductory textbook. For that reason, our Secure C Programming sections
present some key issues and techniques, and provide links and references so you can con-
tinue learning.

Experience has shown that it’s difficult to build industrial-strength systems that stand
up to attacks from viruses, worms, etc. Today, via the Internet, such attacks can be instan-
taneous and global in scope. Software vulnerabilities often come from simple program-
ming issues. Building security into software from the start of the development cycle can
greatly reduce costs and vulnerabilities.

The CERT® Coordination Center (www.cert.org) was created to analyze and
respond promptly to attacks. CERT—the Computer Emergency Response Team—pub-
lishes and promotes secure coding standards to help C programmers and others implement
industrial-strength systems that avoid the programming practices that leave systems vul-
nerable to attacks. The CERT standards evolve as new security issues arise.

26 Preface

We've upgraded our code (as appropriate for an introductory book) to conform to var-
ious CERT recommendations. If you’ll be building C systems in industry, consider reading
The CERT C Secure Coding Standard, 2/e (Robert Seacord, Addison-Wesley Professional,
2014) and Secure Coding in C and C++, 2/e (Robert Seacord, Addison-Wesley Professional,
2013). The CERT guidelines are available free online at

https://www.securecoding.cert.org/confluence/display/seccode/
CERT+C+Coding+Standard

Mr. Seacord, a technical reviewer for the C portion of the last edition of this book, provided
specific recommendations on each of our Secure C Programming sections. Mr. Seacord is
the Secure Coding Manager at CERT at Carnegie Mellon University’s Software Engineering
Institute (SEI) and an adjunct professor in the Carnegie Mellon University School of Com-
puter Science.

The Secure C Programming sections at the ends of Chapters 213 discuss many impor-
tant topics, including;

* testing for arithmetic overflows .

using unsigned integer types

the more secure functions in the C
standard’s Annex K

the importance of checking the sta-
tus information returned by stan-
dard-library functions

range checking
secure random-number generation

array bounds checking

preventing buffer overflows
input validation
avoiding undefined behaviors

choosing functions that return
status information vs. using similar
functions that do not

ensuring that pointers are always
NULL or contain valid addresses
using C functions vs. using prepro-
cessor macros, and more.

Web-Based Materials

The book’s open access Companion Website (http://www.pearsonglobaleditions.com/deitel)
contains source code for all the code examples and the following appendices in PDF format:

* Appendix F, Using the Visual Studio Debugger
* Appendix G, Using the GNU gdb Debugger
* Appendix H, Using the Xcode Debugger

Dependency Charts

Figures 1 and 2 on the next two pages show the dependencies among the chapters to help
instructors plan their syllabi. C How to Program, 8/e is appropriate for CS1 and many CS2
courses, and for intermediate-level C and C++ programming courses. The C++ part of the
book assumes that you've studied C Chapters 1-10.

Teaching Approach

C How to Program, 8/e, contains a rich collection of examples. We focus on good software
engineering, program clarity, preventing common errors, program portability and perfor-
mance issues.

Teaching Approach

27

C Chapter Introduction
Dependency » | Introduction to Computers,

the Internet and the Web

Chart

[Note: Arrows pointing into a

chapter indicate that chapter’s Intro to Programml
dependencies.] 2 Intro to C Programmmg

Control Statemen
and Functions
3 Structured Program

Development in C
4C Program Control
5C Functlons

Arrays, Pomters

and Strings
3 6 C Arrays
Streams and Files
9 C Formatted Input/Output 7 C Pointers
I'I C File Processing 8C Characters and Strings/
Aggregate Types

10 C Structures, Unions, Bit

Manipulation and Enumerations

Other Topics, Multlthreadmg
and the C11 Standard

' ¢ ¢

e

5.14-5. I6 Recursion

/ Data Structures :

.) D Sorting: A Deeper Look
13 C Preprocessor 14 Other C Topics E Multithreading and Other \ & i

> |2 C Data Structures

CI'1 and C99 Topics

Fig. 1 | C chapter dependency chart.

Syntax Shading. For readability, we syntax shade the code, similar to the way most IDEs

and code editors syntax color code. Our syntax-shading conventions are:

comments appear like this in gray
keywords appear 1ike this 1in dark blue

all other code appears in black

28 Preface

C++ Chapter / Object-Based
Dependency —> Programming
Chart I5 C++ as a Better C;

Intro to Object Technology
16 Intro to Classes and Objects

17 Classes: A Deeper Look;
Throwing Exceptions

18 Operator Overloading;
Class string

Object-Oriented
Programming
19 OOP: Inheritance <———

20 OOP: 21 Stream 22 Exception Handling: 23 Intro to Custom
Polymorphism Input/Output A Deeper Look Templates

Fig. 2 | C++ chapter dependency chart.

Code Highlighting. We place gray rectangles around the key code in each program.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold colored text for easy reference. We emphasize C program text
in the Lucida font (for example, int x = 5;).

Objectives. Each chapter begins with a list of objectives.

Hllustrations/Figures. Abundant flowcharts, tables, line drawings, UML diagrams (in the
C++ chapters), programs and program outputs are included.

Programming Tips. We include programming tips to help you focus on important aspects
of program development. These tips and practices represent the best we’ve gleaned from a
combined eight decades of programming and teaching experience.

Good Programming Practices
} The Good Programming Practices call attention to techniques thar will help you pro-
S duce programs that are clearer, more understandable and more maintainable.
7z Common Programming Errors
’% Pointing out these Common Programming Errors reduces the likelihood that you'll
\ make them.

< Error-Prevention Tips
These tips contain suggestions for exposing and removing bugs from your programs and

Jfor avoiding bugs in the first place.

Software Used in C How to Program, 8/e 29

Performance Tips

. These tips highlight opportunities for making your programs run faster or minimizing the
— amount of memory that they occupy.

- Portability Tips
(y The Portability Tips help you write code that will run on a variety of platforms.

Software Engineering Observations
The Software Engineering Observations highlight architectural and design issues that
X affect the construction of software systems, especially large-scale systems.

Summary Bullets. We present a detailed section-by-section, bullet-list summary of each
chapter with bolded key terms. For easy reference, most of the key terms are followed by
the page number of their defining occurrences.

Self-Review Exercises and Answers. Extensive self-review exercises and answers are includ-
ed for self-study.
Exercises. Each chapter concludes with a substantial set of exercises including:
* simple recall of important terminology and concepts
* identifying the errors in code samples
* writing individual program statements
* writing small portions of C functions (and C++ member functions and classes)
* writing complete programs
* implementing major projects
Index. We've included an extensive index, which is especially helpful when you use the

book as a reference. Defining occurrences of key terms are highlighted in the index with a
bold colored page number.

Software Used in C How to Program, 8/e
We tested the programs in C How to Program, 8/e using the following free compilers:
¢ GNUCand C++ (http://gcc.gnu.org/install/binaries.htm1), which are al-

ready installed on most Linux systems and can be installed on OS X and Windows
systems.

* Microsoft’s Visual C++ in Visual Studio 2013 Community edition, which you
can download from http://go.microsoft.com/?1inkid=9863608

e LLVM in Apple’s Xcode IDE, which OS X users can download from the Mac
App Store.

For other free C and C++ compilers, visit:

http://www.thefreecountry.com/compilers/cpp.shtml
http://www.compilers.net/Dir/Compilers/CCpp.htm
http://www.freebyte.com/programming/cpp/#cppcompilers
http://en.wikipedia.org/wiki/List_of_compilers#C.2B.2B_compilers

30 Preface

Instructor Resources

The following supplements are available to gualified instructors only through Pearson Educa-
tion’s password-protected Instructor Resource Center (www. pearsonglobaleditions.com/deitel):

* PowerPoint® slides containing all the code and figures in the text, plus bulleted
items that summarize key points.

» Test Item File of multiple-choice questions (approximately two per top-level book
section)

* Solutions Manualwith solutions to most (but not all) of the end-of-chapter exer-
cises. Please check the Instructor Resource Center to determine which exercises
have solutions.

Please do not write to us requesting access to the Instructor Resource Center. Access is
restricted to college instructors teaching from the book. Instructors may obtain access
only through their Pearson representatives. If you’re not a registered faculty member, con-
tact your Pearson representative.

Solutions are noz provided for “project” exercises. Check out our Programming Proj-
ects Resource Center for lots of additional exercise and project possibilities (http://
www.deitel.com/ProgrammingProjects/).

Acknowledgments

We'd like to thank Abbey Deitel and Barbara Deitel for long hours devoted to this project.
Abbey co-authored Chapter 1. We're fortunate to have worked with the dedicated team
of publishing professionals at Pearson. We appreciate the guidance, savvy and energy of
Tracy Johnson, Executive Editor, Computer Science. Kelsey Loanes and Bob Engelhardt
did a marvelous job managing the review and production processes, respectively.

C How to Program, 8/e Reviewers

We wish to acknowledge the efforts of our reviewers. Under tight deadlines, they scrutinized
the text and the programs and provided countless suggestions for improving the presenta-
tion: Dr. Brandon Invergo (GNU/European Bioinformatics Institute), Danny Kalev (A
Certified System Analyst, C Expert and Former Member of the C++ Standards Committee),
Jim Hogg (Program Manager, C/C++ Compiler Team, Microsoft Corporation), José Anto-
nio Gonzdlez Seco (Parliament of Andalusia), Sebnem Onsay (Special Instructor, Oakland
University School of Engineering and Computer Science), Alan Bunning (Purdue Universi-
ty), Paul Clingan (Ohio State University), Michael Geiger (University of Massachusetts,
Lowell), Jeonghwa Lee (Shippensburg University), Susan Mengel (Texas Tech University),
Judith O'Rourke (SUNY at Albany) and Chen-Chi Shin (Radford University).

Other Recent Editions Reviewers

William Albrecht (University of South Florida), lan Barland (Radford University), Ed
James Beckham (Altera), John Benito (Blue Pilot Consulting, Inc. and Convener of ISO
WG14—the Working Group responsible for the C Programming Language Standard),
Dr. John F. Doyle (Indiana University Southeast), Alireza Fazelpour (Palm Beach Com-
munity College), Mahesh Hariharan (Microsoft), Hemanth H.M. (Software Engineer at
SonicWALL), Kevin Mark Jones (Hewlett Packard), Lawrence Jones, (UGS Corp.), Don

A Special Thank You to Brandon Invergo and Jim Hogg 31

Kostuch (Independent Consultant), Vytautus Leonavicius (Microsoft), Xiaolong Li (Indi-
ana State University), William Mike Miller (Edison Design Group, Inc.), Tom Rethard
(The University of Texas at Arlington), Robert Seacord (Secure Coding Manager at SEI/
CERT, author of The CERT C Secure Coding Standard and technical expert for the inter-
national standardization working group for the programming language C), José Antonio
Gonzdlez Seco (Parliament of Andalusia), Benjamin Seyfarth (University of Southern Mis-
sissippi), Gary Sibbitts (St. Louis Community College at Meramec), William Smith (Tul-
sa Community College) and Douglas Walls (Senior Staff Engineer, C compiler, Sun
Microsystems—now part of Oracle).

A Special Thank You to Brandon Invergo and Jim Hogg

We were privileged to have Brandon Invergo (GNU/European Bioinformatics Institute)
and Jim Hogg (Program Manager, C/C++ Compiler Team, Microsoft Corporation) do full-
book reviews. They scrutinized the C portion of the book, providing numerous insights
and constructive comments. The largest part of our audience uses either the GNU gec
compiler or Microsoft’s Visual C++ compiler (which also compiles C). Brandon and Jim
helped us ensure that our content was accurate for the GNU and Microsoft compilers, re-
spectively. Their comments conveyed a love of software engineering, computer science
and education that we share.

Well, there you have it! C is a powerful programming language that will help you
write high-performance, portable programs quickly and effectively. It scales nicely into the
realm of enterprise systems development to help organizations build their business-critical
and mission-critical information systems. As you read the book, we would sincerely appre-
ciate your comments, criticisms, corrections and suggestions for improving the text. Please
address all correspondence—including questions—to:

deitel@deitel.com

We'll respond promptly, and post corrections and clarifications on:

www.deitel.com/books/chtp8/

We hope you enjoy working with C How to Program, Eighth Edition as much as we enjoyed
writing it!

Paul Deitel
Harvey Deitel

About the Authors

Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. Through Deitel & Associates, Inc.,
he has delivered hundreds of programming courses to industry clients, including Cisco,
IBM, Siemens, Sun Microsystems, Dell, Lucent Technologies, Fidelity, NASA at the Ken-
nedy Space Center, the National Severe Storm Laboratory, White Sands Missile Range,
Hospital Sisters Health System, Rogue Wave Software, Boeing, SunGard Higher Educa-
tion, Stratus, Cambridge Technology Partners, One Wave, Hyperion Software, Adra Sys-
tems, Entergy, CableData Systems, Nortel Networks, Puma, iRobot, Invensys and many

32 Preface

more. He and his co-author, Dr. Harvey M. Deitel, are the world’s best-selling program-
ming-language textbook/professional book/video authors.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates,
Inc., has 54 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees in electrical engineering from MIT and a Ph.D. in mathematics from Boston Uni-
versity (all with a focus on computing). He has extensive college teaching experience,
including earning tenure and serving as the Chairman of the Computer Science Department
at Boston College before founding Deitel & Associates in 1991 with his son, Paul Deitel.
The Deitels’ publications have earned international recognition, with translations published
in Chinese, Korean, Japanese, German, Russian, Spanish, French, Polish, Italian, Portu-
guese, Greek, Urdu and Turkish. Dr. Deitel has delivered hundreds of programming courses

to academic institutions, major corporations, government organizations and the military.

About Deitel & Associates, Inc.

Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s training clients include many of the world’s largest
companies, government agencies, branches of the military, and academic institutions. The
company offers instructor-led training courses delivered at client sites worldwide on major
programming languages and platforms, including C, C++, Java™, Android app develop-
ment, Swift™ and iOS® app development, Visual C#®, Visual Basic®, Visual C++®, Py-
thon®, object technology, Internet and web programming and a growing list of additional
programming and software development courses.

Through its 40-year publishing partnership with Pearson/Prentice Hall, Deitel & Asso-
ciates, Inc., publishes leading-edge programming textbooks and professional books in print
and popular e-book formats, and LiveLessons video courses (available on Safari Books Online
and other video platforms). Deitel 8 Associates, Inc. and the authors can be reached at:

deitel@deitel.com
To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum deliv-
ered to groups of software engineers at client sites worldwide, visit:
http://www.deitel.com/training
To request a proposal for on-site, instructor-led training at your organization, e-mail
deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information, visit

http://www.informit.com/store/sales.aspx
Pearson would like to thank and acknowledge Arup Bhattacharjee, RCC Institute

of Information Technology, Soumen Mukherjee, RCC Institute of Information
Technology, and Saru Dhir, Amity University, for reviewing the Global Edition.

Introduction to Computers,
the Internet and the Web

Objectives
In this chapter, you'll learn:

m Basic computer concepts.

m The different types of
programming languages.

m The history of the C
programming language.

m The purpose of the C
Standard Library.

m The basics of object
technology.

m A typical C program-
development environment.

m To test-drive a C application
in Windows, Linux and Mac
oS X.

m Some basics of the Internet
and the World Wide Web.

” Qutline

Chapter |

Introduction to Computers, the Internet and the Web

1.1 Introduction

1.2 Hardware and Software

[.2.1' Moore’s Law
1.22 Computer Organization

1.3 Data Hierarchy
1.4 Machine Languages, Assembly
Languages and High-Level Languages

1.5 The C Programming Language
1.6 C Standard Library
1.7 C++ and Other C-Based Languages

1.8 Object Technology

1.8.1 The Automobile as an Object
1.82 Methods and Classes

1.83 Instantiation

1.84 Reuse

185 Messages and Method Calls

1.8.6 Attributes and Instance Variables

1.9.7 Standard Input, Standard Output and
Standard Error Streams
1.10 Test-Driving a C Application in
Windows, Linux and Mac OS X
[.10.1 Running a C Application from the
Windows Command Prompt
1.10.2 Running a C Application Using GNU
C with Linux
1.10.3 Running a C Application Using the
Teminal on Mac OS X
I.11 Operating Systems
[.11.I' Windows—A Proprietary Operating
System
[.11.2 Linux—An Open-Source Operating
System
I.11.3 Apple’s Mac OS X; Apple’s iOS for

iPhone®, iPad® and iPod Touch®
Devices

[.11.4 Google’s Android
1.12 The Internet and World Wide Web

1.8.7 Encapsulation and Information Hiding
1.88 Inheritance

1.9 Typical C Program-Development
Environment

1.9.1 Phase I: Creating a Program

1.9.2 Phases 2 and 3: Preprocessing and
Compiling a C Program

193 Phase 4: Linking

194 Phase 5: Loading

1.9.5 Phase 6: Execution

1.9.6 Problems That May Occur at
Execution Time

[.12.1' The Internet: A Network of Networks

1.12.2 The World Wide Web: Making the
Internet User-Friendly

[.123 Web Services

1.124 Ajax

[.12.5 The Internet of Things

1.13 Some Key Software Terminology
1.14 Keeping Up-to-Date with
Information Technologies

Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

1.1 Introduction

Welcome to C and C++! C is a concise yet powerful computer programming language
that’s appropriate for technically oriented people with little or no programming experience
and for experienced programmers to use in building substantial software systems. C How
to Program, Eighth Edition, is an effective learning tool for each of these audiences.

The core of the book emphasizes software engineering through the proven methodol-
ogies of structured programming in C and object-oriented programming in C++. The book
presents hundreds of complete working programs and shows the outputs produced when
those programs are run on a computer. We call this the “live-code approach.” All of these
example programs may be downloaded from our website www. deitel. com/books/chtp8/.

Most people are familiar with the exciting tasks that computers perform. Using this
textbook, you’ll learn how to command computers to perform those tasks. It’s software
(i.e., the instructions you write to command computers to perform actions and make deci-
sions) that controls computers (often referred to as hardware).

1.2 Hardware and Software 35

1.2 Hardware and Software

Computers can perform calculations and make logical decisions phenomenally faster than
human beings can. Many of today’s personal computers can perform billions of calcula-
tions in one second—more than a human can perform in a lifetime. Supercomputers are
already performing thousands of trillions (quadrillions) of instructions per second! China’s
National University of Defense Technology’s Tianhe-2 supercomputer can perform over
33 quadrillion calculations per second (33.86 petaflops)!' To put that in perspective, the
Tianhe-2 supercomputer can perform in one second abour 3 million calculations for every per-
son on the planet! And supercomputing “upper limits” are growing quickly.

Computers process data under the control of sequences of instructions called com-
puter programs. These software programs guide the computer through ordered actions
specified by people called computer programmers.

A computer consists of various devices referred to as hardware (e.g., the keyboard,
screen, mouse, hard disks, memory, DVD drives and processing units). Computing costs
are dropping dramatically, owing to rapid developments in hardware and software tech-
nologies. Computers that might have filled large rooms and cost millions of dollars
decades ago are now inscribed on silicon chips smaller than a fingernail, costing perhaps a
few dollars each. Ironically, silicon is one of the most abundant materials on Earth—ic’s
an ingredient in common sand. Silicon-chip technology has made computing so econom-
ical that computers have become a commodity.

1.2.1 Moore’s Law

Every year, you probably expect to pay at least a little more for most products and services.
The opposite has been the case in the computer and communications fields, especially
with regard to the hardware supporting these technologies. For many decades, hardware
costs have fallen rapidly.

Every year or two, the capacities of computers have approximately doubled inexpen-
sively. This remarkable trend often is called Moore’s Law, named for the person who iden-
tified it in the 1960s, Gordon Moore, co-founder of Intel—the leading manufacturer of
the processors in today’s computers and embedded systems. Moore’s Law and related
observations apply especially to the amount of memory that computers have for programs,
the amount of secondary storage (such as disk storage) they have to hold programs and
data over longer periods of time, and their processor speeds—the speeds at which they exe-
cute their programs (i.e., do their work).

Similar growth has occurred in the communications field—costs have plummeted as
enormous demand for communications bandwidih (i.e., information-carrying capacity)
has attracted intense competition. We know of no other fields in which technology
improves so quickly and costs fall so rapidly. Such phenomenal improvement is truly fos-
tering the Information Revolution.

1. http://www.top500.0rg.

36 Chapter | Introduction to Computers, the Internet and the Web

1.2.2 Computer Organization

Regardless of differences in physical appearance, computers can be envisioned as divided
into various logical units or sections (Fig. 1.1).

Logical unit

Description

Input unit

Output unit

Memory unit

Arithmetic
and logic unit

(ALU)

This “receiving” section obtains information (data and computer programs)
from input devices and places it at the disposal of the other units for process-
ing. Most user input is entered into computers through keyboards, touch
screens and mouse devices. Other forms of input include receiving voice com-
mands, scanning images and barcodes, reading from secondary storage devices
(such as hard drives, DVD drives, Blu-ray Disc™ drives and USB flash
drives—also called “thumb drives” or “memory sticks”), receiving video from a
webcam and having your computer receive information from the Internet (such
as when you stream videos from YouTube® or download e-books from Ama-
zon). Newer forms of input include position data from a GPS device, and
motion and orientation information from an accelerometer (a device that
responds to up/down, left/right and forward/backward acceleration) in a smart-
phone or game controller (such as Microsoft® Kinect® for Xbox®, Wii™
Remote and Sony® PlayStation® Move).

This “shipping” section takes information the computer has processed and
places it on various output devices to make it available for use outside the com-
puter. Most information thats output from computers today is displayed on
screens (including touch screens), printed on paper (“going green” discourages
this), played as audio or video on PCs and media players (such as Apple’s iPods)
and giant screens in sports stadiums, transmitted over the Internet or used to
control other devices, such as robots and “intelligent” appliances. Information
is also commonly output to secondary storage devices, such as hard drives,
DVD drives and USB flash drives. Popular recent forms of output are smart-
phone and game controller vibration, and virtual reality devices like Oculus
Rift.

This rapid-access, relatively low-capacity “warehouse” section retains
information that has been entered through the input unit, making it
immediately available for processing when needed. The memory unit also
retains processed information until it can be placed on output devices by the
output unit. Information in the memory unit is volazile—it’s typically lost
when the computer’s power is turned off. The memory unit is often called
either memory, primary memory or RAM (Random Access Memory). Main
memories on desktop and notebook computers contain as much as 128 GB of
RAM, though 2 to 16 GB is most common. GB stands for gigabytes; a gigabyte
is approximately one billion bytes. A byte is eight bits. A bit is either a 0 or a 1.

This “manufacturing” section performs calculations, such as addition, subtrac-
tion, multiplication and division. It also contains the decision mechanisms that
allow the computer, for example, to compare two items from the memory unit
to determine whether they’re equal. In today’s systems, the ALU is imple-
mented as part of the next logical unit, the CPU.

Fig. 1.1 | Logical units of a computer. (Part | of 2.)

1.3 Data Hierarchy 37

Logical unit Description

Central This “administrative” section coordinates and supervises the operation of the
processing other sections. The CPU tells the input unit when information should be read
unit (CPU) into the memory unit, tells the ALU when information from the memory unit

should be used in calculations and tells the output unit when to send
information from the memory unit to certain output devices. Many of today’s
computers have multiple CPUs and, hence, can perform many operations
simultaneously. A multi-core processor implements multiple processors on a
single integrated-circuit chip—a dual-core processor has two CPUs and a quad-
core processor has four CPUs. Today’s desktop computers have processors that
can execute billions of instructions per second.

Secondary This is the long-term, high-capacity “warehousing” section. Programs or data

storage unit not actively being used by the other units normally are placed on secondary
storage devices (e.g., your hard drive) until they’re again needed, possibly hours,
days, months or even years later. Information on secondary storage devices is
persistens—it’s preserved even when the computer’s power is turned off. Sec-
ondary storage information takes much longer to access than information in
primary memory, but its cost per unit is much less. Examples of secondary stor-
age devices include hard drives, DVD drives and USB flash drives, some of
which can hold over 2 TB (TB stands for terabytes; a terabyte is approximately
one trillion bytes). Typical hard drives on desktop and notebook computers
hold up to 2 TB, and some desktop hard drives can hold up to 6 TB.

Fig. 1.1 | Logical units of a computer. (Part 2 of 2.)

1.3 Data Hierarchy

Data items processed by computers form a data hierarchy that becomes larger and more
complex in structure as we progress from the simplest data items (called “bits”) to richer
ones, such as characters and fields. Figure 1.2 illustrates a portion of the data hierarchy.

Bits

The smallest data item in a computer can assume the value 0 or the value 1. It’s called a
bit (short for “binary digit"—a digit that can assume one of zwo values). Remarkably, the
impressive functions performed by computers involve only the simplest manipulations of
0s and ls—examining a bits value, setting a bits value and reversing a bits value (from 1 to
0 or from 0 to 1).

Characters

I¢’s tedious for people to work with data in the low-level form of bits. Instead, they prefer to
work with decimal digits (0-9), letters (A—Z and a—z), and special symbols (e.g., $, @, %, &, *,
(), =+ ", 2and /). Digits, letters and special symbols are known as characters. The com-
puter’s character set is the set of all the characters used to write programs and represent data
items. Computers process only 1s and 0s, so a computer’s character set represents every char-
acter as a pattern of 1s and 0s. C supports various character sets (including Unicode®) that
are composed of characters containing one, two or four bytes (8, 16 or 32 bits). Unicode con-
tains characters for many of the world’s languages. See Appendix B for more information on

38 Chapter | Introduction to Computers, the Internet and the Web

the ASCII (American Standard Code for Information Interchange) character set—the pop-
ular subset of Unicode that represents uppercase and lowercase letters, digits and some com-
mon special characters.

Sally Black

Tom Blue
Judy Green File
Iris Orange
Randy Red
Judy Green Record
Judy Field

T

01001010 Character |

T

1 Bit

Fig. 1.2 | Data hierarchy.

Fields

Just as characters are composed of bits, fields are composed of characters or bytes. A field
is a group of characters or bytes that conveys meaning. For example, a field consisting of
uppercase and lowercase letters can be used to represent a person’s name, and a field con-
sisting of decimal digits could represent a person’s age.

Records

Several related fields can be used to compose a record. In a payroll system, for example,
the record for an employee might consist of the following fields (possible types for these
fields are shown in parentheses):

* Employee identification number (a whole number)

e Name (a string of characters)

* Address (a string of characters)

* Hourly pay rate (a number with a decimal point)

* Year-to-date earnings (a number with a decimal point)

* Amount of taxes withheld (a number with a decimal point)

1.3 Data Hierarchy 39

Thus, a record is a group of related fields. In the preceding example, all the fields belong to
the same employee. A company might have many employees and a payroll record for each.

Files

A file is a group of related records. [/Noze: More generally, a file contains arbitrary data in
arbitrary formats. In some operating systems, a file is viewed simply as a sequence of bytes—
any organization of the bytes in a file, such as organizing the data into records, is a view
created by the application programmer.] It’s not unusual for an organization to have many
files, some containing billions, or even trillions, of characters of information.

Database

A database is a collection of data organized for easy access and manipulation. The most
popular model is the relational database, in which data is stored in simple ables. A table
includes records and fields. For example, a table of students might include first name, last
name, major, year, student ID number and grade point average fields. The data for each
student is a record, and the individual pieces of information in each record are the fields.
You can search, sort and otherwise manipulate the data based on its relationship to multiple
tables or databases. For example, a university might use data from the student database in
combination with data from databases of courses, on-campus housing, meal plans, etc.

Big Data

The amount of data being produced worldwide is enormous and growing quickly. Accord-
ing to IBM, approximately 2.5 quintillion bytes (2.5 exabyzes) of data are created daily and
90% of the world’s data was created in just the past two years!> According to an IDC
study, the global data supply will reach 40 zezzabyzes (equal to 40 trillion gigabytes) annu-
ally by 2020.? Figure 1.3 shows some common byte measurements. Big data applications
deal with massive amounts of data and this field is growing quickly, creating lots of oppor-
tunity for software developers. According to a study by Gartner Group, over 4 million IT
jobs globally will support big data by 2015.4

Unit Bytes Which is approximately

1 kilobyte (KB) 1024 bytes 103 (1024 bytes exactly)

1 megabyte (MB) 1024 kilobytes 10° (1,000,000 byrtes)

1 gigabyte (GB) 1024 megabytes 10° (1,000,000,000 bytes)

1 terabyte (TB) 1024 gigabytes 10'2 (1,000,000,000,000 bytes)

1 petabyte (PB) 1024 terabytes 10" (1,000,000,000,000,000 bytes)

1 exabyte (EB) 1024 petabytes 108 (1,000,000,000,000,000,000 bytes)

1 zettabyte (ZB) 1024 exabytes 102! (1,000,000,000,000,000,000,000 bytes)

Fig. 1.3 | Byte measurements.

2. http://www.ibm.com/smarterplanet/us/en/business_analytics/article/
it_business_intelligence.html.

3. http://recode.net/2014/01/10/stuffed-why-data-storage-is-hot-again-really/.

4. http://tech.fortune.cnn.com/2013/09/04/big-data-employment-boom/.

40 Chapter | Introduction to Computers, the Internet and the Web

1.4 Machine Languages, Assembly Languages and High-
Level Languages

Programmers write instructions in various programming languages, some directly under-
standable by computers and others requiring intermediate franslation steps. Hundreds of
such languages are in use today. These may be divided into three general types:

1. Machine languages
2. Assembly languages
3. High-level languages

Machine Languages

Any computer can directly understand only its own machine language, defined by its
hardware design. Machine languages generally consist of strings of numbers (ultimately re-
duced to 1s and 0s) that instruct computers to perform their most elementary operations
one at a time. Machine languages are machine dependent (a particular machine language
can be used on only one type of computer). Such languages are cumbersome for humans.
For example, here’s a section of an early machine-language payroll program that adds over-
time pay to base pay and stores the result in gross pay:

+1300042774
+1400593419
+1200274027

Assembly Languages and Assemblers

Programming in machine language was simply too slow and tedious for most program-
mers. Instead of using the strings of numbers that computers could directly understand,
programmers began using English-like abbreviations to represent elementary operations.
These abbreviations formed the basis of assembly languages. Translator programs called as-
semblers were developed to convert early assembly-language programs to machine lan-
guage at computer speeds. The following section of an assembly-language payroll program
also adds overtime pay to base pay and stores the result in gross pay:

Tload basepay
add overpay
store grosspay

Although such code is clearer to humans, it’s incomprehensible to computers until trans-
lated to machine language.

High-Level Languages and Compilers

With the advent of assembly languages, computer usage increased rapidly, but program-
mers still had to use numerous instructions to accomplish even the simplest tasks. To
speed the programming process, high-level languages were developed in which single
statements could be written to accomplish substantial tasks. Translator programs called
compilers convert high-level language programs into machine language. High-level lan-
guages allow you to write instructions that look almost like everyday English and contain
commonly used mathematical notations. A payroll program written in a high-level lan-
guage might contain a single statement such as

grossPay = basePay + overTimePay

1.5 The C Programming Language 41

From the programmer’s standpoint, high-level languages are preferable to machine
and assembly languages. C is one of the most widely used high-level programming lan-
guages.

Interpreters

Compiling a large high-level language program into machine language can take consider-
able computer time. Interpreter programs, developed to execute high-level language pro-
grams directly, avoid the delay of compilation, although they run slower than compiled
programs.

1.5 The C Programming Language

C evolved from two previous languages, BCPL and B. BCPL was developed in 1967 by
Martin Richards as a language for writing operating systems and compilers. Ken Thomp-
son modeled many features in his B language after their counterparts in BCPL, and in
1970 he used B to create early versions of the UNIX operating system at Bell Laboratories.

The C language was evolved from B by Dennis Ritchie at Bell Laboratories and was
originally implemented in 1972. C initially became widely known as the development lan-
guage of the UNIX operating system. Many of today’s leading operating systems are
written in C and/or C++. C is mostly hardware independent—with careful design, it’s pos-
sible to write C programs that are portable to most computers.

Built for Performance
C is widely used to develop systems that demand performance, such as operating systems,
embedded systems, real-time systems and communications systems (Figure 1.4).

Application Description

Operating systems C’s portability and performance make it desirable for imple-
menting operating systems, such as Linux and portions of
Microsoft’s Windows and Google’s Android. Apple’s OS X is
built in Objective-C, which was derived from C. We discuss
some key popular desktop/notebook operating systems and
mobile operating systems in Section 1.11.

Embedded systems The vast majority of the microprocessors produced each year are
embedded in devices other than general-purpose computers.
These embedded systems include navigation systems, smart
home appliances, home security systems, smartphones, tablets,
robots, intelligent traffic intersections and more. C is one of the
most popular programming languages for developing embedded
systems, which typically need to run as fast as possible and con-
serve memory. For example, a car’s antilock brakes must
respond immediately to slow or stop the car without skidding;
game controllers used for video games should respond instanta-
neously to prevent any lag between the controller and the action
in the game, and to ensure smooth animations.

Fig. 1.4 | Some popular performance-oriented C applications. (Part | of 2.)

42 Chapter | Introduction to Computers, the Internet and the Web

Application Description

Real-time systems Real-time systems are often used for “mission-critical” applica-
tions that require nearly instantaneous and predictable response
times. Real-time systems need to work continuously—for exam-
ple, an air-traffic-control system must constantly monitor the
positions and velocities of the planes and report that information
to air-traffic controllers without delay so that they can alert the
planes to change course if there’s a possibility of a collision.

Communications systems Communications systems need to route massive amounts of
data to their destinations quickly to ensure that things such as
audio and video are delivered smoothly and without delay.

Fig. 1.4 | Some popular performance-oriented C applications. (Part 2 of 2.)

By the late 1970s, C had evolved into what’s now referred to as “traditional C.” The
publication in 1978 of Kernighan and Ritchie’s book, The C Programming Language, drew
wide attention to the language. This became one of the most successful computer science
books of all time.

Standardization

The rapid expansion of C over various types of computers (sometimes called hardware plat-
forms) led to many variations that were similar but often incompatible. This was a serious
problem for programmers who needed to develop code that would run on several platforms.
It became clear that a standard version of C was needed. In 1983, the X3]11 technical com-
mittee was created under the American National Standards Committee on Computers and
Information Processing (X3) to “provide an unambiguous and machine-independent defi-
nition of the language.” In 1989, the standard was approved as ANSI X3.159-1989 in the
United States through the American National Standards Institute (ANSI), then worldwide
through the International Standards Organization (ISO). We call this simply Standard C.
This standard was updated in 1999—its standards document is referred to as INCITS/ISO/
IEC 9899-1999 and often referred to simply as C99. Copies may be ordered from the Amer-

ican National Standards Institute (www.ansi.org) at webstore.ansi.org/ansidocstore.

The C11 Standard

We also discuss the latest C standard (referred to as C11), which was approved in 2011. C11
refines and expands C’s capabilities. We've integrated into the text and Appendix E (in easy-
to-include-or-omit sections) many of the new features implemented in leading C compilers.

Portability Tip 1.1
Aoy Because Cis a hardware-independent, widely available language, applications written in
T Coften can run with little or no modification on a wide range of computer systems.

1.6 C Standard Library

As you'll learn in Chapter 5, C programs consist of pieces called functions. You can pro-
gram all the functions that you need to form a C program, but most C programmers take

.7 C++ and Other C-Based Languages 43

advantage of the rich collection of existing functions called the C Standard Library. Thus,
there are really two parts to learning how to program in C—learning the C language itself
and learning how to use the functions in the C Standard Library. Throughout the book,
we discuss many of these functions. P. J. Plauger’s book The Standard C Library is must
reading for programmers who need a deep understanding of the library functions, how to
implement them and how to use them to write portable code. We use and explain many
C library functions throughout this text.

C How to Program, 8/e encourages a building-block approach to creating programs.
Avoid “reinventing the wheel.” Instead, use existing pieces—this is called software reuse.
When programming in C you'll typically use the following building blocks:

* C Standard Library functions
* Functions you create yourself
* Functions other people (whom you trust) have created and made available to you

The advantage of creating your own functions is that you'll know exactly how they
work. You'll be able to examine the C code. The disadvantage is the time-consuming effort
that goes into designing, developing, debugging and performance-tuning new functions.

+ Performance Tip I.1
ﬂ' Using C Standard Library functions instead of writing your own versions can improve
= program performance, because these functions are carefully written to perform efficiently.

. Portability Tip 1.2
'& Using C Standard Library functions instead of writing your own comparable versions can
S improve program portability, because these functions are used in virtually all Standard C
implementations.

1.7 C++ and Other C-Based Languages

C++ was developed by Bjarne Stroustrup at Bell Laboratories. It has its roots in C, provid-
ing a number of features that “spruce up” the C language. More important, it provides ca-
pabilities for object-oriented programming. Objects are essentally reusable software
components that model items in the real world. Using a modular, object-oriented design-
and-implementation approach can make software-development groups more productive.
Chapters 15-23 present a condensed treatment of C++ selected from our book C++ How
to Program. Figure 1.5 introduces several other popular C-based programming languages.

Programming

language Description

Objective-C Objective-C is an object-oriented language based on C. It was developed in the
carly 1980s and later acquired by NeXT, which in turn was acquired by Apple. It
has become the key programming language for the OS X operating system and
all iOS-powered devices (such as iPods, iPhones and iPads).

Fig. 1.5 | Popular C-based programming languages. (Part | of 2.)

44 Chapter | Introduction to Computers, the Internet and the Web

Programming

language

Description

Java

C#

PHP

Python

JavaScript

Swift

Sun Microsystems in 1991 funded an internal corporate research project which
resulted in the C++-based object-oriented programming language called Java. A
key goal of Java is to enable the writing of programs that will run on a broad vari-
ety of computer systems and computer-controlled devices. This is sometimes
called “write once, run anywhere.” Java is used to develop large-scale enterprise
applications, to enhance the functionality of web servers (the computers that pro-
vide the content we see in our web browsers), to provide applications for con-
sumer devices (smartphones, television set-top boxes and more) and for many
other purposes. Java is also the language of Android app development.

Microsoft’s three primary object-oriented programming languages are Visual
Basic (based on the original Basic), Visual C++ (based on C++) and Visual C#
(based on C++ and Java, and developed for integrating the Internet and the web
into computer applications). Non-Microsoft versions of C# are also available.

PHP, an object-oriented, open-source scripting language supported by a commu-
nity of users and developers, is used by millions of websites. PHP is platform
independent—implementations exist for all major UNIX, Linux, Mac and Win-
dows operating systems. PHP also supports many databases, including the popu-
lar open-source MySQL.

Python, another object-oriented scripting language, was released publicly in
1991. Developed by Guido van Rossum of the National Research Institute for
Mathematics and Computer Science in Amsterdam (CWI), Python draws heav-
ily from Modula-3—a systems programming language. Python is “extensible”—
it can be extended through classes and programming interfaces.

JavaScript is the most widely used scripting language. It’s primarily used to add
dynamic behavior to web pages—for example, animations and improved interac-
tivity with the user. It’s provided with all major web browsers.

Swift, Apple’s new programming language for developing iOS and Mac apps, was
announced at the Apple World Wide Developer Conference (WWDC) in June
2014. Although apps can still be developed and maintained with Objective-C,
Swift is Apple’s app-development language of the future. It's a modern language
that eliminates some of the complexity of Objective-C, making it easier for
beginners and those transitioning from other high-level languages such as Java,
C#, C++ and C. Swift emphasizes performance and security, and has full access
to the iOS and Mac programming capabilities.

Fig. 1.5 | Popular C-based programming languages. (Part 2 of 2.)

1.8 Object Technology

This section is intended for readers who will be studying C++ in the later part of this book.
Building software quickly, correctly and economically remains an elusive goal at a time
when demands for new and more powerful software are soaring. Objects, or more precisely
the classes objects come from, are essentially reusable software components. There are date
objects, time objects, audio objects, video objects, automobile objects, people objects, etc.
Almost any noun can be reasonably represented as a software object in terms of attributes

1.8 Object Technology 45

(e.g., name, color and size) and behaviors (e.g., calculating, moving and communicating).
Software developers are discovering that using a modular, object-oriented design-and-
implementation approach can make software-development groups much more productive
than was possible with earlier techniques—object-oriented programs are often easier to
understand, correct and modify.

1.8.1 The Automobile as an Object

To help you understand objects and their contents, let’s begin with a simple analogy. Sup-
pose you want to drive a car and make it go faster by pressing its accelerator pedal. What must
happen before you can do this? Well, before you can drive a car, someone has to design it.
A car typically begins as engineering drawings, similar to the &lueprints that describe the
design of a house. These drawings include the design for an accelerator pedal. The pedal
hides from the driver the complex mechanisms that actually make the car go faster, just as
the brake pedal “hides” the mechanisms that slow the car, and the steering wheel “hides”
the mechanisms that turn the car. This enables people with little or no knowledge of how
engines, braking and steering mechanisms work to drive a car easily.

Just as you cannot cook meals in the kitchen of a blueprint, you cannot drive a car’s
engineering drawings. Before you can drive a car, it must be built from the engineering
drawings that describe it. A completed car has an actual accelerator pedal to make it go
faster, but even that’s not enough—the car won’t accelerate on its own (hopefully!), so the
driver must press the pedal to accelerate the car.

1.8.2 Methods and Classes

Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a method. The method houses the program state-
ments that actually perform its tasks. It hides these statements from its user, just as a car’s
accelerator pedal hides from the driver the mechanisms of making the car go faster. In ob-
ject-oriented programming languages, we create a program unit called a class to house the
set of methods that perform the class’s tasks. For example, a class that represents a bank
account might contain one method to deposit money to an account, another to withdraw
money from an account and a third to 7nquire what the account’s current balance is. A class
is similar in concept to a car’s engineering drawings, which house the design of an accel-
erator pedal, steering wheel, and so on.

1.8.3 Instantiation

Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object of a class before a program can perform the tasks that
the class’s methods define. The process of doing this is called instantiation. An object is
then referred to as an instance of its class.

1.8.4 Reuse

Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and

46 Chapter | Introduction to Computers, the Internet and the Web

effective systems, because existing classes and components often have undergone extensive
testing, debugging and performance tuning. Just as the notion of interchangeable parts was
crucial to the Industrial Revolution, reusable classes are crucial to the software revolution
that has been spurred by object technology.

Software Engineering Observation 1.1
Use a building-block approach to creating your programs. Avoid reinventing the wheel—
=25 use existing high-quality pieces wherever possible. Such software reuse is a key benefit of

object-oriented programming.

1.8.5 Messages and Method Calls

When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that s, to go faster. Similatly, you send messages to an object. Each message is implemented
as a method call that tells a method of the object to perform its task. For example, a pro-
gram might call a particular bank-account object’s deposir method to increase the account’s
balance.

1.8.6 Attributes and Instance Variables

A car, besides having capabilities to accomplish tasks, also has astributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but zor how much is in the tanks of ozher cars.

An object, similarly, has actributes that it carries along as ic’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank-account object has
a balance attribute that represents the amount of money in the account. Each bank-
account object knows the balance in the account it represents, but 7oz the balances of the
other accounts in the bank. Attributes are specified by the class’s instance variables.

1.8.7 Encapsulation and Information Hiding

Classes (and their objects) encapsulate, i.c., encase, their attributes and methods. A class’s
(and its objects) attributes and methods are intimately related. Objects may communicate
with one another, but they’re normally not allowed to know how other objects are imple-
mented—implementation details are hidden within the objects themselves. This informa-
tion hiding, as we'll see, is crucial to good software engineering,.

1.8.8 Inheritance

A new class of objects can be created conveniently by inheritance—the new class (called
the subclass) starts with the characteristics of an existing class (called the superclass), pos-
sibly customizing them and adding unique characteristics of its own. In our car analogy,
an object of class “convertible” certainly 75 an object of the more general class “automo-
bile,” but more specifically, the roof can be raised or lowered.

1.9 Typical C Program-Development Environment 47

1.9 Typical C Program-Development Environment

C systems generally consist of several parts: a program-development environment, the lan-

guage and the C Standard Library. The following discussion explains the typical C devel-

opment environment shown in Fig. 1.6.

Primary
Memory

Primary
Memory

Phase I:

Programmer creates program
in the editor and stores it on
disk.

Phase 2:
Preprocessor program
processes the code.

Phase 3:

Compiler creates
object code and stores
it on disk.

Phase 4:

Linker links the object

code with the libraries,
creates an executable file and
stores it on disk.

Phase 5:
Loader puts program
in memory.

Phase 6:

CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.

Fig. 1.6 | Typical C development environment.

48 Chapter | Introduction to Computers, the Internet and the Web

C programs typically go through six phases to be executed (Fig. 1.6). These are: edit,
preprocess, compile, link, load and execute. Although C How to Program, 8/e, is a generic
C textbook (written independently of the details of any particular operating system), we
concentrate in this section on a typical Linux-based C system. [Noze: The programs in this
book will run with little or no modification on most current C systems, including Micro-
soft Windows-based systems.] If you’re not using a Linux system, refer to the documenta-
tion for your system or ask your instructor how to accomplish these tasks in your
environment. Check out our C Resource Center at www.deitel.com/C to locate “getting
started” tutorials for popular C compilers and development environments.

1.9.1 Phase I: Creating a Program

Phase 1 consists of editing a file. This is accomplished with an editor program. Two edi-
tors widely used on Linux systems are vi and emacs. Software packages for the C/C++ in-
tegrated program development environments such as Eclipse and Microsoft Visual Studio
have editors that are integrated into the programming environment. You type a C program
with the editor, make corrections if necessary, then store the program on a secondary stor-
age device such as a hard disk. C program filenames should end with the . c extension.

1.9.2 Phases 2 and 3: Preprocessing and Compiling a C Program

In Phase 2, you give the command to compile the program. The compiler translates the C
program into machine-language code (also referred to as object code). In a C system, a pre-
processor program executes automatically before the compiler’s translation phase begins.
The C preprocessor obeys special commands called preprocessor directives, which indicate
that certain manipulations are to be performed on the program before compilation. These
manipulations usually consist of including other files in the file to be compiled and perform-
ing various text replacements. The most common preprocessor directives are discussed in the
early chapters; a detailed discussion of preprocessor features appears in Chapter 13.

In Phase 3, the compiler translates the C program into machine-language code. A
syntax error occurs when the compiler cannot recognize a statement because it violates the
rules of the language. The compiler issues an error message to help you locate and fix the
incorrect statement. The C Standard does not specify the wording for error messages
issued by the compiler, so the error messages you see on your system may differ from those
on other systems. Syntax errors are also called compile errors, or compile-time errors.

1.9.3 Phase 4: Linking

The next phase is called linking. C programs typically contain references to functions de-
fined elsewhere, such as in the standard libraries or in the private libraries of groups of pro-
grammers working on a particular project. The object code produced by the C compiler
typically contains “holes” due to these missing parts. A linker links the object code with
the code for the missing functions to produce an executable image (with no missing piec-
es). On a typical Linux system, the command to compile and link a program is called gcc
(the GNU C compiler). To compile and link a program named welcome.c, type

gcc welcome.c

at the Linux prompt and press the Enter key (or Return key). [Note: Linux commands are
case sensitive; make sure that each c is lowercase and that the letters in the filename are in

.10 Test-Driving a C Application in Windows, Linux and Mac OS X 49

the appropriate case.] If the program compiles and links correctly, a file called a.out (by
default) is produced. This is the executable image of our welcome.c program.

1.9.4 Phase 5: Loading

The next phase is called loading. Before a program can be executed, the program must first
be placed in memory. This is done by the loader, which takes the executable image from
disk and transfers it to memory. Additional components from shared libraries that support
the program are also loaded.

1.9.5 Phase 6: Execution

Finally, the computer, under the control of its CPU, executes the program one instruction
at a time. To load and execute the program on a Linux system, type ./a.out at the Linux
prompt and press Enter.

1.9.6 Problems That May Occur at Execution Time

Programs do not always work on the first try. Each of the preceding phases can fail because
of various errors that we'll discuss. For example, an executing program might actempt to
divide by zero (an illegal operation on computers just as in arithmetic). This would cause
the computer to display an error message. You would then return to the edit phase, make
the necessary corrections and proceed through the remaining phases again to determine
that the corrections work properly.

=~z Common Programming Error 1.1
{% Errors such as division-by-zero occur as a program runs, so they are called runtime errors

= or execution-time errors. Divide-by-zero is generally a fatal error, i.e., one that causes the

program to terminate immediately without successfully performing its job. Nonfatal errors
allow programs to run to completion, often producing incorrect results.

1.9.7 Standard Input, Standard Output and Standard Error Streams

Most C programs input and/or output data. Certain C functions take their input from
stdin (the standard input stream), which is normally the keyboard, but stdin can be re-
directed to another stream. Data is often output to stdout (the standard output stream),
which is normally the computer screen, but stdout can be redirected to another stream.
When we say that a program prints a result, we normally mean that the result is displayed
on a screen. Data may be output to devices such as disks and printers. There’s also a stan-
dard error stream referred to as stderr. The stderr stream (normally connected to the
screen) is used for displaying error messages. It’s common to route regular output data,
i.e., stdout, to a device other than the screen while keeping stderr assigned to the screen
so that the user can be immediately informed of errors.

1.10 Test-Driving a C Application in Windows, Linux
and Mac OS X

In this section, you’ll run and interact with your first C application. You’'ll begin by run-
ning a guess-the-number game, which randomly picks a number from 1 to 1000 and

50 Chapter I Introduction to Computers, the Internet and the Web

prompts you to guess it. If your guess is correct, the game ends. If your guess is not correct,
the application indicates it’s higher or lower than the correct number. There’s no limit on
the number of guesses you can make but you should be able to guess any of the numbers
in this range correctly in 10 or fewer tries. There’s some nice computer science behind this
game—in Section 6.10, Searching Arrays, you’ll explore the binary search technique.

For this test-drive only, we've modified this application from the exercise you'll be
asked to create in Chapter 5. Normally this application randomly selects the correct
answers. The modified application uses the same sequence of correct answers every time
you execute the program (though the particular sequence may vary by compiler), so you
can use the same guesses we use in this section and see the same results.

We'll demonstrate running a C application using the Windows Command Prompt, a
shell on Linux and a Terminal window in Mac OS X. The application runs similarly on all
three platforms. After you perform the test-drive for your platform, you can try the ran-
domized version of the game, which we’ve provided with each test drive’s version of the
example in a subfolder named randomized_version.

Many development environments are available in which you can compile, build and
run C applications, such as GNU C, Dev C++, Microsoft Visual C++, CodeLite, Net-
Beans, Eclipse, Xcode, etc. Consult your instructor for information on your specific devel-
opment environment. Most C++ development environments can compile both C and
C++ programs.

In the following steps, you'll run the application and enter various numbers to guess
the correct number. The elements and functionality that you see in this application are
typical of those you'll learn to program in this book. We use fonts to distinguish between
features you see on the screen (e.g., the Command Prompt) and elements that are not
directly related to the screen. We emphasize screen features like titles and menus (e.g., the
File menu) in a semibold sans-serif Helvetica font, and to emphasize filenames, text dis-
played by an application and values you should enter into an application (e.g., Guess-
Number or 500) we use a sans-serif Lucida font. As you've noticed, the defining
occurrence of each key term is set in bold blue type.

For the Windows version of the test drive in this section, we’ve modified the back-
ground color of the Command Prompt window to make the Command Prompt windows
more readable. To modify the Command Prompt colors on your system, open a Command
Prompt by selecting Start > All Programs > Accessories > Command Prompt, then right click
the title bar and select Properties. In the "Command Prompt" Properties dialog box that
appears, click the Colors tab, and select your preferred text and background colors.

1.10.1 Running a C Application from the Windows Command Prompt

1. Checking your setup. It’s important to read the Before You Begin section at
www.deitel.com/books/chtp8/ to make sure that you've copied the book’s ex-
amples to your hard drive correctly.

2. Locating the completed application. Open a Command Prompt window. To
change to the directory for the completed GuessNumber application, type
cd C:\examples\ch01\GuessNumber\Windows, then press Enter (Fig. 1.7). The
command cd is used to change directories.

.10 Test-Driving a C Application in Windows, Linux and Mac OS X 51

E¥ Command Prompt EI@
C:\»>cd c:h\examples\ch8l\GuessNumber\Windows

c:\examplesichBl\GuessNumber\Windows >

Fig. 1.7 | Opening a Command Prompt window and changing the directory.

3. Running the GuessNumber application. Now that you are in the directory that
contains the GuessNumber application, type the command GuessNumber
(Fig. 1.8) and press Enter. [Note: GuessNumber . exe is the actual name of the ap-
plication; however, Windows assumes the . exe extension by default.]

B Command Prompt - GuessNumber EI@

c:\examples\ch@l\GuessNumber\Windows>GuessNumber

I have a number between 1 and 1088.
Can you guess my number?
Please type your first guess.

?
-

Fig. 1.8 | Running the GuessNumber application.

4. Entering your first guess. The application displays "Please type your first
guess.", then displays a question mark (?) as a prompt on the next line
(Fig. 1.8). At the prompt, enter 500 (Fig. 1.9).

B Command Prompt - GuessNumber EI@
I have a number between 1 and 1088. -
Can you guess my number?

Please type your first guess.

? 588

Too high. Try again.

rl

Fig. 1.9 | Entering your first guess.

5. Entering another guess. The application displays "Too high. Try again.", mean-
ing that the value you entered is greater than the number the application chose as
the correct guess. So, you should enter a lower number for your next guess. At the
prompt, enter 250 (Fig. 1.10). The application again displays "Too high. Try
again.", because the value you entered is still greater than the number that the
application chose.

52 Chapter | Introduction to Computers, the Internet and the Web

B Command Prompt - GuessNumber EI@

I have a number between 1 and 1088. -
Can you guess my number?
Please type your first guess.
? 500

Too high. Try again.

? 258

Too high. Try again.

rl

Fig. 1.10 | Entering a second guess and receiving feedback.

6. Entering additional guesses. Continue to play the game by entering values until
you guess the correct number. The application will display "Excellent! You
guessed the number!" (Fig. 1.11).

B Command Prompt - GuessNumber EI@
Too high. Try again. -
? 125
Too high. Try again.
? 62
Too high. Try again.
? 31
Too low. Try again.
? 46
Too high. Try again.
? 39
Too low. Try again.
? 43
Too high. Try again.
2 41
Too low. Try again.
? 42

m

Excellent! You guessed the number!
lould you like to play again?
Please type (l=yes, 2=no)? _

Fig. 1.11 | Entering additional guesses and guessing the correct number.

7. Playing the game again or exiting the application. After you guess correctly, the
application asks if you’d like to play another game (Fig. 1.11). At the prompt, en-
tering 1 causes the application to choose a new number and displays the message
“Please type your first guess.” followed by a question-mark prompt
(Fig. 1.12), so you can make your first guess in the new game. Entering 2 ends
the application and returns you to the application’s directory at the Command
Prompt (Fig. 1.13). Each time you execute this application from the beginning
(i.e., Srep 3), it will choose the same numbers for you to guess.

8. Close the Command Prompt window.

.10 Test-Driving a C Application in Windows, Linux and Mac OS X 53

B Command Prompt - GuessNumber EI@

Excellent! You guessed the number! -
lould you like to play again?
Please type (l=yes, 2=no)? 1

I have a number between 1 and 1088.
Can you guess my number?
Please type your first guess.

? 18
-

Fig. 1.12 | Playing the game again.

E¥ Command Prompt EI@

Excellent! You guessed the number!
lould you like to play again?
Please type (l=yes, 2=no)? 2

C:\examplesichBl\GuessNumber\Windows > -

Fig. 1.13 | Exiting the game.

1.10.2 Running a C Application Using GNU C with Linux

For the figures in this section, we use a bold font to point out the user input required by
each step. In this test drive, we assume that you know how to copy the examples into your
home directory. Please see your instructor if you have any questions regarding copying the
files to your Linux system. Also, for the figures in this section, we use a bold font to point
out the user input required by each step. The prompt in the shell on our system uses the
tilde (~) character to represent the home directory, and each prompt ends with the dollar-
sign ($) character. The prompt will vary among Linux systems.

1. Checking your setup. It’'s important to read the Before You Begin section at
www.deitel.com/books/chtp8/ to make sure that you've copied the book’s ex-
amples to your hard drive correctly.

2. Locating the completed application. From a Linux shell, change to the completed
GuessNumber application directory (Fig. 1.14) by typing

cd examples/ch01/GuessNumber/GNU

then pressing Enter. The command cd is used to change directories.

~$ cd examples/ch01/GuessNumber/GNU
~/examples/ch01/GuessNumber/GNU$

Fig. 1.14 | Changing to the GuessNumber application’s directory.

54 Chapter | Introduction to Computers, the Internet and the Web

3. Compiling the GuessNumber application. To run an application on the GNU
C++ compiler, you must first compile it by typing

gcc GuessNumber.c -o GuessNumber

as in Fig. 1.15. This command compiles the application. The -o option is fol-
lowed by the name you’d like the executable file to have—GuessNumber-.

~/examples/ch01/GuessNumber/GNU$ gcc -std=cll GuessNumber.c -o GuessNumber
~/examples/ch01/GuessNumber/GNU$

Fig. 1.15 | Compiling the GuessNumber application using the gcc command.

4. Running the GuessNumber application. To run the executable file GuessNumber,
type . /GuessNumber at the next prompt, then press Enzer (Fig. 1.16).

~/examples/ch01/GuessNumber/GNUS$./GuessNumber

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.
?

Fig. 1.16 | Running the GuessNumber application.

5. Entering your first guess. The application displays "Please type your first
guess.", then displays a question mark (?) as a prompt on the next line
(Fig. 1.16). At the prompt, enter 500 (Fig. 1.17).

~/examples/ch01/GuessNumber/GNUS$./GuessNumber

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

? 500

Too high. Try again.

?

Fig. 1.17 | Entering an initial guess.

6. Entering another guess. The application displays "Too high. Try again.", mean-
ing that the value you entered is greater than the number the application chose as
the correct guess (Fig. 1.17). At the next prompt, enter 250 (Fig. 1.18). This time
the application displays "Too Tow. Try again.", because the value you entered is
less than the correct guess.

.10 Test-Driving a C Application in Windows, Linux and Mac OS X 55

~/examples/ch01/GuessNumber/GNU$./GuessNumber

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

? 500

Too high. Try again.

? 250

Too low. Try again.

?

Fig. 1.18 | Entering a second guess and receiving feedback.

7. Entering additional guesses. Continue to play the game (Fig. 1.19) by entering
values until you guess the correct number. When you guess correctly, the appli-
cadon,dﬁplays”Exce11ent! You guessed the number!"

Too low. Try again.

? 375

Too low. Try again.

? 437

Too high. Try again.
? 406

Too high. Try again.
? 391

Too high. Try again.
7 383

Too low. Try again.

? 387

Too high. Try again.
? 385

Too high. Try again.
7 384

Excellent! You guessed the number!
Would you Tike to play again?
Please type (1l=yes, 2=no)?

Fig. 1.19 | Entering additional guesses and guessing the correct number.

8. Playing the game again or exiting the application. After you guess the correct
number, the application asks if you’d like to play another game. At the prompt,
entering 1 causes the application to choose a new number and displays the mes-
sage "Please type your first guess." followed by a question-mark prompt
(Fig. 1.20) so that you can make your first guess in the new game. Entering 2 ends
the application and returns you to the application’s directory in the shell
(Fig. 1.21). Each time you execute this application from the beginning (i.c., Step
4), it will choose the same numbers for you to guess.

56 Chapter | Introduction to Computers, the Internet and the Web

Excellent! You guessed the number!
Would you 1ike to play again?
Please type (1l=yes, 2=no)7 1

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

?

Fig. 1.20 | Playing the game again.

Excellent! You guessed the number!
Would you Tike to play again?
Please type (1l=yes, 2=no)? 2

~/examples/ch01/GuessNumber/GNU$

Fig. 1.21 | Exiting the game.

1.10.3 Running a C Application Using the Teminal on Mac OS X

For the figures in this section, we use a bold font to point out the user input required by
cach step. You'll use Mac OS X’s Terminal window to perform this test-drive. To open a
Terminal window, click the Spotlight Search icon in the upper-right corner of your screen,
then type Terminal to locate the Terminal application. Under Applications in the Spotlight
Search results, select Terminal to open a Terminal window. The prompt in a Terminal win-
dow has the form hoseName: ~ userFolder$ to represent your user directory. For the figures
in this section, we removed the hostName: part and used the generic name wuserFolder to
represent your uset account’s folder.

1. Checking your setup. It’s important to read the Before You Begin section at
www.deitel.com/books/chtp8/ to make sure that you've copied the book’s ex-
amples to your hard drive correctly. We assume that the examples are located in
your user account’s Documents/examples folder.

2. Locating the completed application. In the Terminal window, change to the com-
pleted GuessNumber application directory (Fig. 1.22) by typing

cd Documents/examples/ch01l/GuessNumber/GNU

then pressing Enter. The command cd is used to change directories.

hostName:~ userFolder$ cd Documents/examples/ch01l/GuessNumber/GNU
hostName:GNU$

Fig. 1.22 | Changing to the GuessNumber application’s directory.

3. Compiling the GuessNumber application. To run an application, you must first
compile it by typing

clang GuessNumber.c -o GuessNumber

.10 Test-Driving a C Application in Windows, Linux and Mac OS X 57

as in Fig. 1.23. This command compiles the application and produces an execut-
able file called GuessNumber.

hostName:GNU~ userFolder$ clang GuessNumber.c -o GuessNumber
hostName:GNU~ userFolder$

Fig. 1.23 | Compiling the GuessNumber application using the gcc command.

4. Running the GuessNumber application. To run the executable file GuessNumber,
type . /GuessNumber at the next prompt, then press Enzer (Fig. 1.24).

hostName:GNU~ userFolder$./GuessNumber

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

?

Fig. 1.24 | Running the GuessNumber application.

5. Entering your first guess. The application displays "Please type your first
guess.", then displays a question mark (?) as a prompt on the next line
(Fig. 1.24). At the prompt, enter 500 (Fig. 1.25).

hostName:GNU~ userFolder$./GuessNumber

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

? 500

Too Tow. Try again.
?

Fig. 1.25 | Entering an initial guess.

6. Entering another guess. The application displays "Too low. Try again.”
(Fig. 1.25), meaning that the value you entered is less than the number the appli-
cation chose as the correct guess. At the next prompt, enter 750 (Fig. 1.26). Again
the application displays "Too Tow. Try again.", because the value you entered is
less than the correct guess.

7. Entering additional guesses. Continue to play the game (Fig. 1.27) by entering
values until you guess the correct number. When you guess correctly, the appli-
cation displays "Excellent! You guessed the number!"

58 Chapter | Introduction to Computers, the Internet and the Web

hostName:GNU~ userFolder$./GuessNumber

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

? 500

Too Tow. Try again.

? 750

Too low. Try again.

?

Fig. 1.26 | Entering a second guess and receiving feedback.

? 825

Too high. Try again.
7 788

Too low. Try again.
? 806

Too Tow. Try again.
7 815

Too high. Try again.
7 811

Too high. Try again.
7 808

Excellent! You guessed the number!
Would you Tike to play again?
Please type (l=yes, 2=no)?

Fig. 1.27 | Entering additional guesses and guessing the correct number.

8. Playing the game again or exiting the application. After you guess the correct
number, the application asks if you’d like to play another game. At the prompt,
entering 1 causes the application to choose a new number and displays the mes-
sage "Please type your first guess." followed by a question-mark prompt
(Fig. 1.28) so you can make your first guess in the new game. Entering 2 ends the
application and returns you to the application’s folder in the Terminal window
(Fig. 1.29). Each time you execute this application from the beginning (i.c., Step

4), it will choose the same numbers for you to guess.

Excellent! You guessed the number!
Would you 1ike to play again?
Please type (1l=yes, 2=no)7 1

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.
?

Fig. 1.28 | Playing the game again.

.11 Operating Systems 59

Excellent! You guessed the number!
Would you 1ike to play again?
Please type (1l=yes, 2=no)? 2

hostName:GNU~ userFolder$

Fig. 1.29 | Exiting the game.

I.11 Operating Systems

Operating systems are software systems that make using computers more convenient for
users, application developers and system administrators. They provide services that allow
cach application to execute safely, efficiently and concurrently (i.c., in parallel) with other
applications. The software that contains the core components of the operating system is
the kernel. Popular desktop operating systems include Linux, Windows and Mac OS X.
Popular mobile operating systems used in smartphones and tablets include Google’s An-
droid, Apple’s iOS (for its iPhone, iPad and iPod Touch devices), Windows Phone and
BlackBerry OS.

I.11.1 Windows—A Proprietary Operating System

In the mid-1980s, Microsoft developed the Windows operating system, consisting of a
graphical user interface built on top of DOS—an enormously popular personal-computer
operating system that users interacted with by typing commands. Windows borrowed
many concepts (such as icons, menus and windows) popularized by early Apple Macintosh
operating systems and originally developed by Xerox PARC. Windows 8.1 is Microsoft’s
latest operating system—its features include PC and tablet support, a tiles-based user in-
terface, security enhancements, touch-screen and multi-touch support, and more. Win-
dows is a proprietary operating system—it’s controlled by Microsoft exclusively. It’s by far
the world’s most widely used operating system.

1.11.2 Linux—An Open-Source Operating System

The Linux operating system—which is popular in servers, personal computers and embed-
ded systems—is perhaps the greatest success of the gpen-source movement. The open-
source software development style departs from the proprietary development style (used,
for example, with Microsoft’s Windows and Apple’s Mac OS X). With open-source de-
velopment, individuals and companies—often worldwide—contribute their efforts in de-
veloping, maintaining and evolving software. Anyone can use and customize it for their
own purposes, typically at no charge.

Some organizations in the open-source community are the Eclipse Foundation (the
Eclipse Integrated Development Environment helps programmers conveniently develop
software), the Mozilla Foundation (creators of the Firefox web browser), the Apache Software
Foundation (creators of the Apache web server that delivers web pages over the Internet in
response to web-browser requests) and GitHub and SourceForge (which provide the tools
for managing open-source projects).

Rapid improvements to computing and communications, decreasing costs and open-
source software have made it easier and more economical to create software-based busi-

60 Chapter I Introduction to Computers, the Internet and the Web

nesses now than just a few decades ago. Facebook, which was launched from a college
dorm room, was built with open-source software.’

A variety of issues—such as Microsoft’s market power, the relatively small number of
user-friendly Linux applications and the diversity of Linux distributions (Red Hat Linux,
Ubuntu Linux and many others)—have prevented widespread Linux use on desktop com-
puters. But Linux has become extremely popular on servers and in embedded systems,
such as Google’s Android-based smartphones.

1.11.3 Apple’s Mac OS X; Apple’s iOS for iPhone®, iPad® and iPod
Touch® Devices

Apple, founded in 1976 by Steve Jobs and Steve Wozniak, quickly became a leader in per-
sonal computing. In 1979, Jobs and several Apple employees visited Xerox PARC (Palo
Alto Research Center) to learn about Xerox’s desktop computer that featured a graphical
user interface (GUI). That GUI served as the inspiration for the Apple Macintosh,
launched with much fanfare in a memorable Super Bowl ad in 1984.

The Objective-C programming language, created by Brad Cox and Tom Love at
Stepstone in the early 1980s, added capabilities for object-oriented programming (OOP)
to the C programming language. Steve Jobs left Apple in 1985 and founded NeXT Inc.
In 1988, NeXT licensed Objective-C from StepStone and developed an Objective-C com-
piler and libraries which were used as the platform for the NeXTSTEP operating system’s
user interface and Interface Builder—used to construct graphical user interfaces.

Jobs returned to Apple in 1996 when Apple bought NeXT. Apple’s Mac OS X oper-
ating system is a descendant of NeXTSTEP. Apple’s proprietary operating system, iOS, is
derived from Apple’s Mac OS X and is used in the iPhone, iPad and iPod Touch devices.

1.11.4 Google’s Android

Android—the fastest growing tablet and smartphone operating system—is based on the Li-
nux kernel and Java as its primary programming language. One benefit of developing An-
droid apps is the openness of the platform. The operating system is open source and free.

The Android operating system was developed by Android, Inc., which was acquired by
Google in 2005. In 2007, the Open Handset Alliance™—which has 87 company members
wortldwide—was formed to develop, maintain and evolve Android, driving innovation in
mobile technology and improving the user experience while reducing costs. As of April 2013,
more than 1.5 million Android devices (smartphones, tablets, etc.) were being activated
worldwide daily.G Android devices now include smartphones, tablets, e-readers, robots, jet
engines, NASA satellites, game consoles, refrigerators, televisions, cameras, health-care
devices, smartwatches, automobile in-vehicle infotainment systems (for controlling the
radio, GPS, phone calls, thermostat, etc.) and more.” Android also executes on desktop and
notebook computers.®

5. https://code.facebook.com/projects/.

6. http://www.technobuffalo.com/2013/04/16/google-daily-android-activations-1-5-
million/.

7. http://www.businessweek.com/articles/2013-05-29/behind-the-internet-of-things-
is-android-and-its-everywhere.

8. http://www.android-x86.org.

.12 The Internet and World Wide Web 61

1.12 The Internet and World Wide Web

In the late 1960s, ARPA—the Advanced Research Projects Agency of the United States
Department of Defense—rolled out plans for networking the main computer systems of
approximately a dozen ARPA-funded universities and research institutions. The comput-
ers were to be connected with communications lines operating at speeds on the order of
50,000 bits per second, a stunning rate at a time when most people (of the few who even
had networking access) were connecting over telephone lines to computers at a rate of 110
bits per second. Academic research was about to take a giant leap forward. ARPA proceed-
ed to implement what quickly became known as the ARPANET, the precursor to today’s
Internet. Today’s fastest Internet speeds are on the order of billions of bits per second with
trillion-bits-per-second speeds on the horizon!

Things worked out differently from the original plan. Although the ARPANET
enabled researchers to network their computers, its main benefit proved to be the capa-
bility for quick and easy communication via what came to be known as electronic mail (e-
mail). This is true even on today’s Internet, with e-mail, instant messaging, file transfer
and social media such as Facebook and Twitter enabling billions of people worldwide to
communicate quickly and easily.

The protocol (set of rules) for communicating over the ARPANET became known as
the Transmission Control Protocol (TCP). TCP ensured that messages, consisting of
sequentially numbered pieces called packets, were properly routed from sender to receiver,
arrived intact and were assembled in the correct order.

1.12.1 The Internet: A Network of Networks

In parallel with the early evolution of the Internet, organizations worldwide were imple-
menting their own networks for both intraorganization (that is, within an organization)
and interorganization (that is, between organizations) communication. A huge variety of
networking hardware and software appeared. One challenge was to enable these different
networks to communicate with each other. ARPA accomplished this by developing the In-
ternet Protocol (IP), which created a true “network of networks,” the current architecture
of the Internet. The combined set of protocols is now called TCP/IP.

Businesses rapidly realized that by using the Internet, they could improve their oper-
ations and offer new and better services to their clients. Companies started spending large
amounts of money to develop and enhance their Internet presence. This generated fierce
competition among communications carriers and hardware and software suppliers to meet
the increased infrastructure demand. As a result, bandwidth—the information-carrying
capacity of communications lines—on the Internet has increased tremendously, while
hardware costs have plummeted.

1.12.2 The World Wide Web: Making the Internet User-Friendly
The World Wide Web (simply called “the web”) is a collection of hardware and software

associated with the Internet that allows computer users to locate and view multimedia-
based documents (documents with various combinations of text, graphics, animations, au-
dios and videos) on almost any subject. The introduction of the web was a relatively recent
event. In 1989, Tim Berners-Lee of CERN (the European Organization for Nuclear Re-
search) began to develop a technology for sharing information via “hyperlinked” text doc-

62 Chapter | Introduction to Computers, the Internet and the Web

uments. Berners-Lee called his invention the HyperText Markup Language (HTML). He
also wrote communication protocols such as HyperText Transfer Protocol (HTTP) to
form the backbone of his new hypertext information system, which he referred to as the
World Wide Web.

In 1994, Berners-Lee founded an organization, called the World Wide Web Consor-
tium (W3C, http://www.w3.org), devoted to developing web technologies. One of the
W3C’s primary goals is to make the web universally accessible to everyone regardless of
disabilities, language or culture.

1.12.3 Web Services

Web services are software components stored on one computer that can be accessed by an
app (or other software component) on another computer over the Internet. With web ser-
vices, you can create mashups, which enable you to rapidly develop apps by combining com-
plementary web services, often from multiple organizations and possibly other forms of
information feeds. For example, 100 Destinations (http://www.100destinations.co.uk)
combines the photos and tweets from Twitter with the mapping capabilities of Google Maps
to allow you to explore countries around the world through the photos of others.

Programmableweb (http://www.programmableweb.com/) provides a directory of over
11,150 APIs and 7,300 mashups, plus how-to guides and sample code for creating your own
mashups. Figure 1.30 lists some popular web services. According to Programmableweb, the
three most widely used APIs for mashups are Google Maps, Twitter and YouTube.

Web services source How it’s used

Google Maps Mapping services

Twitter Microblogging

YouTube Video search

Facebook Social networking

Instagram Photo sharing

Foursquare Mobile check-in

LinkedIn Social networking for business

Groupon Social commerce

Netflix Movie rentals

eBay Internet auctions

Wikipedia Collaborative encyclopedia

PayPal Payments

Last.fm Internet radio

Amazon eCommerce Shopping for books and lots of other products
Salesforce.com Customer Relationship Management (CRM)
Skype Internet telephony

Fig. 1.30 | Some popular web services (http://www.programmableweb.com/
category/all/apis). (Part | of 2.)

.12 The Internet and World Wide Web 63

Web services source How it’s used

Microsoft Bing Search

Flickr Photo sharing
Zillow Real-estate pricing
Yahoo Search Search
WeatherBug Weather

Fig. 1.30 | Some popular web services (http://www.programmableweb.com/
category/all/apis). (Part 2 of 2.)

Figure 1.31 lists directories where you’ll find information about many of the most
popular web services. Figure 1.32 lists a few popular web mashups.

Directory URL

ProgrammableWeb www . programmableweb. com

Google Code API Directory code.google.com/apis/gdata/docs/directory.html

Fig. 1.31 | Web services directories.

URL Description

http://twikle.com/ Twikle uses Twitter web services to aggregate popular
news stories being shared online.

http://trendsmap.com/ TrendsMap uses Twitter and Google Maps. It allows
you to track tweets by location and view them on a
map in real time.

http://www.coindesk.com/price/ The Bitcoin Price Ticker Widget uses CoinDesk’s

bitcoin-price-ticker-widget/ APIs to display the real-time Bitcoin price, the day’s
high and low prices and a graph of the price fluctua-
tions over the last sixty minutes.

http://www.dutranslation.com/ The Double Translation mashup allows you to use
Bing and Google translation services simultaneously
to translate text to and from over 50 languages. You
can then compare the results between the two.

http://musicupdated.com/ Music Updated uses Last.fm and YouTube web ser-
vices. Use it to track album releases, concert informa-
tion and more for your favorite artists.

Fig. 1.32 | A few popular web mashups.

64 Chapter | Introduction to Computers, the Internet and the Web

1.12.4 Ajax

Ajax technology helps Internet-based applications perform like desktop applications—a
difficult task, given that such applications suffer transmission delays as data is shuttled
back and forth between your computer and server computers on the Internet. Using Ajax,
applications like Google Maps have achieved excellent performance and approach the
look-and-feel of desktop applications.

1.12.5 The Internet of Things

The Internet is no longer just a network of computers—it’s an Internet of Things. A thing
is any object with an IP address and the ability to send data automatically over the Inter-
net—e.g., a car with a transponder for paying tolls, a heart monitor implanted in a human,
a smart meter that reports energy usage, mobile apps that can track your movement and
location, and smart thermostats that adjust room temperatures based on weather forecasts
and activity in the home.

1.13 Some Key Software Terminology

Figure 1.33 lists a number of buzzwords that you'll hear in the software development com-

munity.
Agile software Agile software development is a set of methodologies that try to get soft-
development ware implemented faster and using fewer resources. Check out the Agile
Alliance (waw.agilealliance.org) and the Agile Manifesto
(www.agilemanifesto.org).

Refactoring Refactoring involves reworking programs to make them clearer and easier
to maintain while preserving their correctness and functionality. It’s
widely employed with agile development methodologies. Many IDEs
contain built-in refactoring tools to do major portions of the reworking
automatically.

Design patterns Design patterns are proven architectures for constructing flexible and
maintainable object-oriented software. The field of design patterns tries
to enumerate those recurring patterns, encouraging software designers to
reuse them to develop better-quality software using less time, money and
effort.

LAMP LAMP is an acronym for the open-source technologies that many devel-

opers use to build web applications inexpensively—it stands for Linux,
Apache, MySQL and PHP (or Perl or Python—two other popular scripting
languages). MySQL is an open-source database-management system.
PHP is the most popular open-source server-side “scripting” language for
developing web applications. Apache is the most popular web server soft-
ware. The equivalent for Windows development is WAMP— Windows,
Apache, MySQL and PHP.

Fig. 1.33 | Software technologies. (Part | of 2.)

.13 Some Key Software Terminology 65

Technology Description

Software as a Service Software has generally been viewed as a product; most software still is
(SaaS) offered this way. If you want to run an application, you buy a software
package from a software vendor—often a CD, DVD or web download.
You then install that software on your computer and run it as needed. As
new versions appear, you upgrade your software, often at considerable
cost in time and money. This process can become cumbersome for orga-
nizations that must maintain tens of thousands of systems on a diverse
array of computer equipment. With Software as a Service (SaaS), the
software runs on servers elsewhere on the Internet. When that server is
updated, all clients worldwide see the new capabilities—no local installa-
tion is needed. You access the service through a browser. Browsers are
quite portable, so you can run the same applications on a wide variety of
computers from anywhere in the world. Salesforce.com, Google, and
Microsoft’s Office Live and Windows Live all offer SaaS.
Platform as a Service Platform as a Service (PaaS) provides a computing platform for develop-
(PaaS) ing and running applications as a service over the web, rather than install-
ing the tools on your computer. Some Paa$ providers are Google App
Engine, Amazon EC2 and Windows Azure™.

Cloud computing SaaS and Paa$ are examples of cloud computing. You can use software
and data stored in the “cloud”—i.e., accessed on remote computers (or
servers) via the Internet and available on demand—rather than having it
stored locally on your desktop, notebook computer or mobile device.
This allows you to increase or decrease computing resources to meet your
needs at any given time, which is more cost effective than purchasing
hardware to provide enough storage and processing power to meet occa-
sional peak demands. Cloud computing also saves money by shifting to
the service provider the burden of managing these apps (such as installing
and upgrading the software, security, backups and disaster recovery).

Software Development Software Development Kits (SDKs) include the tools and documenta-

Kit (SDK) tion developers use to program applications.

Fig. 1.33 | Software technologies. (Part 2 of 2.)

Software is complex. Large, real-world software applications can take many months
or even years to design and implement. When large software products are under develop-
ment, they typically are made available to the user communities as a series of releases, each
more complete and polished than the last (Fig. 1.34).

Version Description

Alpha Alpha software is the earliest release of a software product that’s still under
active development. Alpha versions are often buggy, incomplete and unstable
and are released to a relatively small number of developers for testing new
features, getting early feedback, etc.

Fig. 1.34 | Software product-release terminology. (Part | of 2.)

66 Chapter I Introduction to Computers, the Internet and the Web

Version Description

Beta Beta versions are released to a larger number of developers later in the devel-
opment process after most major bugs have been fixed and new features are
nearly complete. Beta software is more stable, but still subject to change.

Release Release candidates are generally feature complete, (mostly) bug free and ready

candidates for use by the community, which provides a diverse testing environment—
the software is used on different systems, with varying constraints and for a
variety of purposes.

Final release Any bugs that appear in the release candidate are corrected, and eventually
the final product is released to the general public. Software companies often
distribute incremental updates over the Internet.

Continuous Software that’s developed using this approach (for example, Google search or

beta Gmail) generally does not have version numbers. It’s hosted in the cloud (not
installed on your computer) and is constantly evolving so that users always
have the latest version.

Fig. 1.34 | Software product-release terminology. (Part 2 of 2.)

1.14 Keeping Up-to-Date with Information Technologies

Figure 1.35 lists key technical and business publications that will help you stay up-to-date
with the latest news and trends and technology. You can also find a growing list of Inter-
net- and web-related Resource Centers at www. deitel.com/ResourceCenters.html.

Publication URL

AllThingsD allthingsd.com

Bloomberg BusinessWeek www . businessweek . com

CNET news.cnet.com

Communications of the ACM cacm.acm.org

Computerworld www . computerworld. com

Engadget www.engadget. com

eWeek www . eweek . com

Fast Company www . fastcompany . com

Fortune money.cnn.com/magazines/fortune
GigaOM gigaom.com

Hacker News news.ycombinator.com

IEEE Computer Magazine www . computer.org/portal/web/computingnow/computer
InfoWorld www . infoworld.com

Mashable mashable.com

PCWorld www. pcworld.com

SD Times www. sdtimes.com

Fig. 1.35 | Technical and business publications. (Part | of 2.)

I.14 Keeping Up-to-Date with Information Technologies 67

Publication URL

Slashdot slashdot.org

Stack Overflow stackoverflow.com
Technology Review technologyreview.com
Techcrunch techcrunch. com

The Next Web thenextweb . com

The Verge www. theverge.com
Wired www . wired. com

Fig. 1.35 | Technical and business publications. (Part 2 of 2.)

Self-Review Exercises

1.1 Fill in the blanks in each of the following statements:
a) Computers process data under the control of sets of instructions called
b) The key logical units of the computer are the

and .
¢) The three types of languages discussed in the chapter are 5 and

d) The programs that translate high-level-language programs into machine language are
called .

e is an operating system for mobile devices based on the Linux kernel and Java.

f) software is generally feature complete, (supposedly) bug free and ready for use
by the community.

g) The Wii Remote, as well as many smartphones, use a(n) which allows the de-
vice to respond to motion.

h) Cis widely known as the development language of the operating system.

i) is the new programming language for developing iOS and Mac apps.

1.2 Fill in the blanks in each of the following sentences about the C environment.

a) C programs are normally typed into a computer using a(n) program.

b) In a C system, a(n) program automatically executes before the translation
phase begins.

¢) The two most common kinds of preprocessor directives are and

d) The program combines the output of the compiler with various library func—
tions to produce an executable image.

e) The program transfers the executable image from disk to memory.

1.3 Fill in the blanks in each of the following statements (based on Section 1.8):
a) Objects have the property of —although objects may know how to commu-
nicate with one another across well-defined interfaces, they normally are not allowed to
know how other objects are implemented.

b) In object-oriented programming languages, we create to house the set of
methods that perform tasks.
o With , new classes of objects are derived by absorbing characteristics of existing

classes, then adding unique characteristics of their own.
d) Thesize, shape, color and weight of an object are considered of the object’s class.

68 Chapter | Introduction to Computers, the Internet and the Web

Answers to Self-Review Exercises

1.1 a) programs. b) input unit, output unit, memory unit, central processing unit, arithmetic
and logic unit, secondary storage unit. ¢) machine languages, assembly languages, high-level lan-
guages. d) compilers. e) Android. f) Release candidate. g) acceleromoter. h) UNIX. i) Swift.

1.2 a) editor. b) preprocessor. ¢) including other files in the file to be compiled, performing var-
ious text replacements. d) linker. ¢) loader.
1.3 a) information hiding. b) classes. ¢) inheritance. d) attributes.
Exercises
1.4 Categorize each of the following items as either hardware or software:
a) a microprocessor
b) RAM

c¢) Microsoft Visual Studio
d) a preprocessor

e) ascanner

f) an internet browser

1.5 Fill in the blanks in each of the following statements:

a) Translator programs called convert programs written in high-level languages
into machine language.

b) A multi-core processor implements multiple on a single integrated-circuit
chip.

o A places a program in memory so that it can be executed.

d) Programs in generally consist of strings of numbers that instruct
computers to perform their most elementary operations one at a time.

e) A is the smallest data item in a computer.

f) are composed of characters or bytes.

g A is a collection of data organized for easy access and manipulation.

h) C programs typically go through six phases to be executed. These are ,

, and
i) usually allow including other files and various text replacements.
i) and are essentially reusable software components.

1.6 Fill in the blanks in each of the following statements:
a) allows software, platforms and infrastructure to be hosted on
demand over the internet.
b) , a Web 2.0 technology, helps Internet-based applications perform like desk-
top applications.
) , based on the Linux kernel and Java, is the fastest growing mobile and smart-
phone operating system.

1.7 Discuss the meaning of each of the following phases of execution:
a) linking
b) loading

c) execution

1.8 What are standard input, output, and error streams?

Making a Difference 69

1.9 (Internet Negatives) Besides their numerous benefits, the Internet and the web have several
downsides, such as privacy issues, identity theft, spam and malware. Research some of the negative
aspects of the Internet. List five problems and describe what could possibly be done to help solve
each.

1.10 (Watch as an Object) You are probably wearing on your wrist one of the most common
types of objects—a watch. Discuss how each of the following terms and concepts applies to the no-
tion of a watch: object, attributes, behaviors, class, inheritance (consider, for example, an alarm
clock), messages, encapsulation and information hiding.

Making a Difference

Throughout the book we've included Making a Difference exercises in which you'll be asked to
work on problems that really matter to individuals, communities, countries and the world.

1.1l (Test-Drive: Carbon Footprint Calculator) Some scientists believe that carbon emissions,
especially from the burning of fossil fuels, contribute significantly to global warming and that this
can be combatted if individuals take steps to limit their use of carbon-based fuels. Organizations and
individuals are increasingly concerned about their “carbon footprints.” Websites such as TerraPass

http://www.terrapass.com/carbon-footprint-calculator-2/

and Carbon Footprint

http://www.carbonfootprint.com/calculator.aspx

provide carbon-footprint calculators. Test-drive these calculators to determine your carbon foot-
print. Exercises in later chapters will ask you to program your own carbon-footprint calculator. To
prepare for this, use the web to research the formulas for calculating carbon footprints.

1.12 (Tést-Drive: Body Mass Index Calculator) Obesity causes significant increases in illnesses
such as diabetes and heart disease. To determine whether a person is overweight or obese, you can
use a measure called the body mass index (BMI). The United States Department of Health and Hu-
man Services provides a BMI calculator at http://www.nh1bi.nih.gov/guidelines/obesity/BMI/
bmicalc.htm. Use it to calculate your own BMI. An exercise in Exercise 2.32 will ask you to pro-
gram your own BMI calculator. To prepare for this, use the web to research the formulas for calcu-
lating BMI.

1.13 (Amtributes of Hybrid Vehicles) In this chapter you learned some basics of classes. Now you’ll
“flesh out” aspects of a class called “Hybrid Vehicle.” Hybrid vehicles are becoming increasingly
popular, because they often get much better mileage than purely gasoline-powered vehicles. Browse
the web and study the features of four or five of today’s popular hybrid cars, then list as many of
their hybrid-related attributes as you can. Some common attributes include city-miles-per-gallon
and highway-miles-per-gallon. Also list the attributes of the batteries (type, weight, etc.).

1.14 (Gender Neutrality) Many people want to eliminate sexism in all forms of communication.
You’ve been asked to create a program that can process a paragraph of text and replace gender-spe-
cific words with gender-neutral ones. Assuming that you've been given a list of gender-specific
words and their gender-neutral replacements (e.g., replace “wife” with “spouse,” “man” with “per-
son,” “daughter” with “child” and so on), explain the procedure you’d use to read through a para-
graph of text and manually perform these replacements. How might your procedure generate a
strange term like “woperchild?” In Chapter 4, you’ll learn that a more formal term for “procedure”
is “algorithm,” and that an algorithm specifies the steps to be performed and the order in which to
perform them.

» «

70 Chapter | Introduction to Computers, the Internet and the Web

1.15 (Privacy) Some online e-mail services save all e-mail correspondence for some period of
time. Suppose a disgruntled employee were to post all of the e-mail correspondences for millions of
people, including yours, on the Internet. Discuss the issues.

1.16 (Programmer Responsibility and Liability) As a programmer in industry, you may develop
software that could affect people’s health or even their lives. Suppose a software bug in one of your
programs causes a cancer patient to receive an excessive dose during radiation therapy and that the
person is severely injured or dies. Discuss the issues.

1.17 (2010 “Flash Crash”) An example of the consequences of our excessive dependence on
computers was the so-called “flash crash” which occurred on May 6, 2010, when the U.S. stock mar-
ket fell precipitously in a matter of minutes, wiping out trillions of dollars of investments, and then
recovered within minutes. Research online the causes of this crash and discuss the issues it raises.

Introduction to C
Programming

Objectives
In this chapter, you'll:

m Write simple C programs.

m Use simple input and output
statements.

m Use the fundamental data
types.

m Learn computer memory
concepts.

m Use arithmetic operators.

m Learn the precedence of
arithmetic operators.

m Write simple decision-
making statements.

m Begin focusing on secure C
programming practices.

7 Qutline

72 Chapter 2 Introduction to C Programming

2.1 Introduction 2.4 Memory Concepts
2.2 A Simple C Program: Printing a Line 2.5 Arithmetic in C

of Text 2.6 Decision Making: Equality and
2.3 Another Simple C Program: Adding Relational Operators

Two Integers 2.7 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

2.1 Introduction

The C language facilitates a structured and disciplined approach to computer-program
design. In this chapter we introduce C programming and present several examples that
illustrate many important features of C. Each example is analyzed one statement at a time.
In Chapters 3 and 4 we present an introduction to structured programming in C. We then
use the structured approach throughout the remainder of the C portion of the text. We
provide the first of many “Secure C Programming” sections.

2.2 A Simple C Program: Printing a Line of Text

C uses some notations that may appear strange to people who have not programmed com-
puters. We begin by considering a simple C program. Our first example prints a line of
text. The program and its screen output are shown in Fig. 2.1.

// Fig. 2.1: fig02_01.c
// A first program in C.
#include <stdio.h>

// function main begins program execution
int main(void)
{
printf("Welcome to C!\n");
} // end function main

oo ~NGOTUNDR UWN -

Welcome to C!

Fig. 2.1 | A first program in C.

Comments
Even though this program is simple, it illustrates several important features of the C lan-
guage. Lines 1 and 2

// Fig. 2.1: fig02_01l.c

// A first program in C
begin with //, indicating that these two lines are comments. You insert comments to doc-
ument programs and improve program readability. Comments do 7oz cause the computer
to perform any action when the program is run—they’re ignored by the C compiler and

2.2 A Simple C Program: Printing a Line of Text 73

do 7ot cause any machine-language object code to be generated. The preceding comment
simply describes the figure number, filename and purpose of the program. Comments also
help other people read and understand your program.

You can also use /*...*/ multi-line comments in which everything from /* on the
first line to */ at the end of the last line is a comment. We prefer // comments because
they’re shorter and they eliminate common programming errors that occur with /*...%/
comments, especially when the closing */ is omitted.

#include Preprocessor Directive
Line 3

#include <stdio.h>

is a directive to the C preprocessor. Lines beginning with # are processed by the prepro-
cessor before compilation. Line 3 tells the preprocessor to include the contents of the stan-
dard input/output header (<stdio.h>) in the program. This header contains information
used by the compiler when compiling calls to standard input/output library functions such
as printf (line 8). We explain the contents of headers in more detail in Chapter 5.

Blank Lines and White Space

Line 4 is simply a blank line. You use blank lines, space characters and tab characters (i.e.,
“tabs”) to make programs easier to read. Together, these characters are known as white
space. White-space characters are normally ignored by the compiler.

The main Function
Line 6

int main(void)

is a part of every C program. The parentheses after main indicate that main is a program
building block called a function. C programs contain one or more functions, one of which
must be main. Every program in C begins executing at the function main. Functions can
return information. The keyword int to the left of main indicates that main “returns” an
integer (whole-number) value. We'll explain what it means for a function to “return a val-
ue” when we demonstrate how to create your own functions in Chapter 5. For now, sim-
ply include the keyword int to the left of main in each of your programs.

Functions also can receive information when they’re called upon to execute. The void
in parentheses here means that main does 7ot receive any information. In Chapter 14, we’ll
show an example of main receiving information.

Good Programming Practice 2.1
} Every function should be preceded by a comment describing the function’s purpose.

A left brace, {, begins the body of every function (line 7). A corresponding right brace
ends each function (line 9). This pair of braces and the portion of the program between
the braces is called a block. The block is an important program unit in C.

An Output Statement
Line 8

printf();

74 Chapter 2 Introduction to C Programming

instructs the computer to perform an action, namely to print on the screen the string of
characters marked by the quotation marks. A string is sometimes called a character string,
a message or a literal. The entire line, including the printf function (the “f” stands for
“formatted”), its argument within the parentheses and the semicolon (5), is called a state-
ment. Every statement must end with a semicolon (also known as the statement termina-
tor). When the preceding printf statement is executed, it prints the message Welcome to
C! on the screen. The characters normally print exactly as they appear between the double
quotes in the printf statement.

Escape Sequences

Notice that the characters \n were not printed on the screen. The backslash (\) as used
here is called an escape character. It indicates that printf is supposed to do something out
of the ordinary. When encountering a backslash in a string, the compiler looks ahead at
the next character and combines it with the backslash to form an escape sequence. The
escape sequence \n means newline. When a newline appears in the string output by a
printf, the newline causes the cursor to position to the beginning of the next line on the
screen. Some common escape sequences are listed in Fig. 2.2.

Escape sequence Description
\n Newline. Position the cursor at the beginning of the next line.
\t Horizontal tab. Move the cursor to the next tab stop.
\a Alert. Produces a sound or visible alert without changing the current
cursor position.
A\ Backslash. Insert a backslash character in a string.
\" Double quote. Insert a double-quote character in a string.
Fig. 2.2 | Some common escape sequences .

Because the backslash has special meaning in a string, i.e., the compiler recognizes it
as an escape character, we use a double backslash (\\) to place a single backslash in a string.
Printing a double quote also presents a problem because double quotes mark the bound-
aries of a string—such quotes are not printed. By using the escape sequence \" in a string
to be output by printf, we indicate that printf should display a double quote. The right
brace, }, (line 9) indicates that the end of main has been reached.

Add a comment to the line containing the right brace, }, that closes every function, in-

- cluding main.

; ,} Good Programming Practice 2.2
AN
We said that printf causes the computer to perform an action. As any program
executes, it performs a variety of actions and makes decisions. Section 2.6 discusses deci-
sion making. Chapter 3 discusses this action/decision model of programming in depth.

The Linker and Executables
Standard library functions like printf and scanf are ot part of the C programming lan-
guage. For example, the compiler cannor find a spelling error in printf or scanf. When

2.2 A Simple C Program: Printing a Line of Text 75

the compiler compiles a printf statement, it merely provides space in the object program
for a “call” to the library function. But the compiler does 70z know where the library func-
tions are—the /inker does. When the linker runs, it locates the library functions and inserts
the proper calls to these library functions in the object program. Now the object program
is complete and ready to be executed. For this reason, the linked program is called an ex-
ecutable. If the function name is misspelled, the /inker will spot the error, because it will
not be able to match the name in the C program with the name of any known function in
the libraries.

" Mistyping the name of the output function printf as print in a program.

a? Common Programming Error 2. |

Good Programming Practice 2.3

: Indent the entire body of each function one level of indentation (we recommend three
NS spaces) within the braces that define the body of the function. This indentation emphasizes
the functional structure of programs and helps make them easier to read.

Good Programming Practice 2.4

: Set a convention for the indent size you prefer and then uniformly apply that convention.
LN The tab key may be used to create indents, but tab stops can vary. Professional style guides
often recommend using spaces rather than tabs.

Using Multiple printfs

The printf function can print Welcome to C! several different ways. For example, the pro-
gram of Fig. 2.3 produces the same output as the program of Fig. 2.1. This works because
each printf resumes printing where the previous printf stopped printing. The first
printf (line 8) prints Welcome followed by a space (but no newline), and the second
printf (line 9) begins printing on the same line immediately following the space.

// Fig. 2.3: fig02_03.c

1

2 // Printing on one line with two printf statements.
3 #include <stdio.h>

4

5 // function main begins program execution

6 1int main(void)

7 {

8 printf()

9 printf();

]

} // end function main

WeTcome to C!

Fig. 2.3 | Printing one line with two printf statements.

One printf can print several lines by using additional newline characters as in
Fig. 2.4. Each time the \n (newline) escape sequence is encountered, output continues at
the beginning of the next line.

76 Chapter 2 Introduction to C Programming

// Fig. 2.4: fig02_04.c
// Printing multiple Tines with a single printf.
#include <stdio.h>

int main(void)
{
printf("Welcome\nto\nC!\n");

1
2
3
4
5 // function main begins program execution
6
7
8
9 1} // end function main

Welcome
to
C!

Fig. 2.4 | Printing multiple lines with a single printf.

2.3 Another Simple C Program: Adding Two Integers

Our next program uses the Standard Library function scanf to obtain two integers typed
by a user at the keyboard, computes the sum of these values and prints the result using
printf. The program and sample output are shown in Fig. 2.5. [In the input/output dia-
log of Fig. 2.5, we emphasize the numbers entered by the user in bold.]

1 // Fig. 2.5: fig02_05.c

2 // Addition program.

3 #include <stdio.h>

4

5 // function main begins program execution

6 int main(void)

7 {

8 int integerl; // first number to be entered by user
9 int integer2; // second number to be entered by user
10

11 printf("Enter first integer\n"); // prompt

12 scanf("%d", &integerl); // read an integer

13

14 printf("Enter second integer\n"); // prompt

15 scanf("%d", &integer2); // read an integer

16

17 int sum; // variable in which sum will be stored

18 sum = integerl + integer2; // assign total to sum
19
20 printf("Sum is %d\n", sum); // print sum

21 } // end function main

Enter first integer

45

Enter second integer
72

Sum is 117

Fig. 2.5 | Addition program.

2.3 Another Simple C Program: Adding Two Integers 77

The comment in lines 1-2 states the purpose of the program. As we stated eatlier,
every program begins execution with main. The left brace { (line 7) marks the beginning
of the body of main, and the corresponding right brace } (line 21) marks the end of main.

Variables and Variable Definitions
Lines 8-9

int integerl; // first number to be entered by user
int integer2; // second number to be entered by user

are definitions. The names integerl and integer2 are the names of variables—locations
in memory where values can be stored for use by a program. These definitions specify that
variables integerl and integer2 are of type int, which means that they’ll hold inzeger val-
ues, i.e., whole numbers such as 7, —11, 0, 31914 and the like.

Define Variables Before They Are Used

All variables must be defined with a name and a data type before they can be used in a pro-
gram. The C standard allows you to place each variable definition anywhere in main before
that variable’s first use in the code (though some older compilers do not allow this). You’ll
see later why you should define variables close to their first use.

Defining Multiple Variables of the Same Type in One Statement

The preceding definitions could be combined into a single definition as follows:
int integerl, integer2;

but that would have made it difficult to associate comments with each of the variables, as
we did in lines 8-9.

Identifiers and Case Sensitivity

A variable name in C can be any valid identifier. An identifier is a series of characters con-
sisting of letters, digits and underscores (_) that does 70z begin with a digit. C is case sensi-
tive—uppercase and lowercase letters are difféerent in C, so al and Al are different identifiers.

% ? Common Programming Error 2.2

{) Using a capital letter where a lowercase letter should be used (for example, typing Main
= instead of main).

< Error-Prevention Tip 2.1
Avoid starting identifiers with the underscore character (_) to prevent conflicts with com-
piler-generated identifiers and standard library identifiers.

Choosing meaningful variable names helps make a program self-documenting—that is,
* fewer comments are needed.

} Good Programming Practice 2.5

The first letter of an identifier used as a simple variable name should be a lowercase letter.
Later in the text we'll assign special significance to identifiers that begin with a capital
letter and to identifiers that use all capital letters.

} Good Programming Practice 2.6

78 Chapter 2 Introduction to C Programming

Multiple-word variable names can help make a program more readable. Separate the words
with underscores as in total_commissions, o1, if you run the words together, begin each
word after the first with a capital letter as in totalCommissions. The latter style—often
called camel casing because the pattern of uppercase and lowercase letters resembles the sil-
houette of a camel—is preferred.

} Good Programming Practice 2.7
= Lo ™

Prompting Messages
Line 11

printf(); // prompt

displays the literal "Enter first integer" and positions the cursor to the beginning of
the next line. This message is called a prompt because it tells the user to take a specific ac-
tion.

The scanf Function and Formatted Inputs
Line 12

scanf(, &integerl); // read an integer

uses scanf (the “f” stands for “formatted”) to obtain a value from the user. The function
reads from the szandard input, which is usually the keyboard.

This scanf has two arguments, "%d" and &integerl. The first, the format control
string, indicates the zype of data that should be entered by the user. The %d conversion
specifier indicates that the data should be an integer (the letter d stands for “decimal
integer”). The % in this context is treated by scanf (and printf as we'll see) as a special
character that begins a conversion specifier.

The second argument of scanf begins with an ampersand (&)—called the address
operator—followed by the variable name. The &, when combined with the variable name,
tells scanf the location (or address) in memory at which the variable integerl is stored.
The computer then stores the value that the user enters for integerl at that location. The
use of ampersand (&) is often confusing to novice programmers or to people who have pro-
grammed in other languages that do not require this notation. For now, just remember to
precede each variable in every call to scanf with an ampersand. Some exceptions to this
rule are discussed in Chapters 6 and 7. The use of the ampersand will become clear after
we study pointers in Chapter 7.

Place a space after each comma (,) to make programs more readable.

} Good Programming Practice 2.8

When the computer executes the preceding scanf, it waits for the user to enter a value
for variable integerl. The user responds by typing an integer, then pressing the Enzer key
(sometimes labeled as the Return key) to send the number to the computer. The computer
then assigns this number, or value, to the variable integerl. Any subsequent references to
integerl in this program will use this same value. Functions printf and scanf facilitate
interaction between the user and the computer. This interaction resembles a dialogue and
is often called interactive computing.

2.3 Another Simple C Program: Adding Two Integers 79

Prompting for and Inputting the Second Integer
Line 14

printf(); // prompt

displays the message Enter second integer on the screen, then positions the cursor to the
beginning of the next line. This printf also prompts the user to take action. Line 15

scanf(, &integer2); // read an integer

obtains a value for variable integer2 from the user.

Defining the sum Variable
Line 17

int sum; // variable in which sum will be stored

defines the variable sum of type int just before its first use in line 18.

Assignment Statement
The assignment statement in line 18

sum = integerl + integer2; // assign total to sum

calculates the total of variables integerl and integer2 and assigns the result to variable
sum using the assignment operator =. The statement is read as, “sum gezs the value of the
expression integerl + integer2.” Most calculations are performed in assignments. The =
operator and the + operator are called &inary operators because each has rwo operands. The
+ operator’s operands are integerl and integer2. The = operator’s two operands are sum
and the value of the expression integerl + integer2.

Place spaces on either side of a binary operator. This makes the operator stand out and
makes the program more readable.

} Good Programming Practice 2.9
= Lo ™

s Common Programming Error 2.3
’%\ A caleulation in an assignment statement must be on the right side of the = operator. It'’s
=U a compilation error to place a calculation on the left side of an assignment operator.
Printing with a Format Control String
Line 20

printf(, sum); // print sum

calls function printf to print the literal Sum is followed by the numerical value of variable
sum on the screen. This printf has two arguments, "Sum is %d\n" and sum. The first is the
format control string. It contains some literal characters to be displayed and the conversion
specifier %d indicating that an integer will be printed. The second argument specifies the
value to be printed. The conversion specifier for an integer is the same in both printf and
scanf—this is true for most C data types.

Combining a Variable Definition and Assignment Statement
You can assign a value to a variable in its definition—this is known as initializing the vari-
able. For example, lines 1718 can be combined into the statement

80 Chapter 2 Introduction to C Programming

int sum = integerl + integer2; // assign total to sum

which adds integerl and integer2, then stores the result in the variable sum.

Calculations in printf Statements
Calculations can also be performed inside printf statements. For example, lines 17-20
can be replaced with the statement

printf(, integerl + integer2);

in which case the variable sum is not needed.

=~z Common Programming Error 2.4

%} Forgetting to precede a variable in a scanf statement with an ampersand (&) when that
= variable should, in fact, be preceded by an ampersand results in an execution-time error.
On many systems, this causes a “segmentation fault” or “access violation.” Such an error
occurs when a user’s program attempts to access a part of the computer’s memory to which
it does not have access privileges. The precise cause of this error will be explained in

Chapter 7.

Common Programming Error 2.5
Prefm’ing a variable included in a printf statement with an ampermnd when, in ﬁzct,
that variable should not be preceded by an ampersand.

2.4 Memory Concepts

Variable names such as integerl, integer2 and sum actually correspond to locations in
the computer’s memory. Every variable has a name, a type and a value.
In the addition program of Fig. 2.5, when the statement (line 12)

scanf(, &integerl); // read an integer

is executed, the value entered by the user is placed into a memory location to which the
name integerl has been assigned. Suppose the user enters the number 45 as the value for
integerl. The computer will place 45 into location integerl, as shown in Fig. 2.6.
Whenever a value is placed in a memory location, the value replaces the previous value in
that location and the previous value is lost; thus, this process is said to be destructive.

integerl 45

Fig. 2.6 | Memory location showing the name and value of a variable.

Returning to our addition program again, when the statement (line 15)
scanf(, &integer2); // read an integer

executes, suppose the user enters the value 72. This value is placed into the location
integer2, and memory appears as in Fig. 2.7. These locations are not necessarily adjacent
in memory.

2.5 Arithmetic in C 8l

integerl 45

integer?2 72

Fig. 2.7 | Memory locations after both variables are input.

Once the program has obtained values for integerl and integer2, it adds these
values and places the total into variable sum. The statement (line 18)

sum = integerl + integer2; // assign total to sum

that performs the addition also replaces whatever value was stored in sum. This occurs when
the calculated total of integerl and integer2 is placed into location sum (destroying the
value already in sum). After sum is calculated, memory appears as in Fig. 2.8. The values of
integerland integer2 appear exactly as they did before they were used in the calculation.
They were used, but not destroyed, as the computer performed the calculation. Thus,
when a value is 7ead from a memory location, the process is said to be nondestructive.

integerl 45

integer2 72
A ——

sum 117
A

Fig. 2.8 | Memory locations after a calculation.

2.5 Arithmeticin C

Most C programs perform calculations using the C arithmetic operators (Fig. 2.9).

C operation Arithmetic operator Algebraic expression

Addition + f+7 f+7
Subtraction = p-c p-c
Multiplication ~ * bm b *m
Division / x/y or L or x=+y x/y
Remainder % rmod s r%s

Fig. 2.9 | Arithmetic operators.

Note the use of various special symbols not used in algebra. The asterisk (*) indicates
multiplication and the percent sign (%) denotes the remainder operator, which is introduced
below. In algebra, to multiply 4 times &, we simply place these single-letter variable names

82 Chapter 2 Introduction to C Programming

side by side, as in #b. In C, however, if we were to do this, ab would be interpreted as a
single, two-letter name (or identifier). Therefore, C (and many other programming lan-
guages) require that multiplication be explicitly denoted by using the * operator, as in a *
b. The arithmetic operators are all binary operators. For example, the expression 3 + 7 con-
tains the binary operator + and the operands 3 and 7.

Integer Division and the Remainder Operator

Integer division yields an integer result. For example, the expression 7 / 4 evaluates to 1
and the expression 17 / 5 evaluates to 3. C provides the remainder operator, %, which
yields the remainder after integer division. The remainder operator is an integer operator
that can be used only with integer operands. The expression x % y yields the remainder af-
ter x is divided by y. Thus, 7% 4 yields 3 and 17 % 5 yields 2. We’ll discuss several interesting
applications of the remainder operator.

-~ Common Programming Error 2.6

i’%\‘ An attempt to divide by zero is normally undefined on computer systems and generally re-
= sults in a fatal error that causes the program to terminate immediately without having
successfully performed its job. Nonfatal errors allow programs to run to completion, often

producing incorrect results.

Arithmetic Expressions in Straight-Line Form

Arithmetic expressions in C must be written in straight-line form to facilitate entering
programs into the computer. Thus, expressions such as “a divided by b” must be written
as a/b so that all operators and operands appear in a straight line. The algebraic notation

a

b

is generally not acceptable to compilers, although some special-purpose software packages
do support more natural notation for complex mathematical expressions.

Parentheses for Grouping Subexpressions
Parentheses are used in C expressions in the same manner as in algebraic expressions. For
example, to multiply a times the quantity b + ¢ we write a * (b +c).

Rules of Operator Precedence
C applies the operators in arithmetic expressions in a precise sequence determined by the
following rules of operator precedence, which are generally the same as those in algebra:

1. Operators in expressions contained within pairs of parentheses are evaluated first.
Parentheses are said to be at the “highest level of precedence.” In cases of nested,
or embedded, parentheses, such as

(Ca+b)+c)
the operators in the innermost pair of parentheses are applied first.

2. Multiplication, division and remainder operations are applied next. If an ex-
pression contains several multiplication, division and remainder operations, eval-
uation proceeds from left to right. Multiplication, division and remainder are said
to be on the same level of precedence.

2.5 Arithmetic in C 83

3. Addition and subtraction operations are evaluated next. If an expression contains
several addition and subtraction operations, evaluation proceeds from left to right.
Addition and subtraction also have the same level of precedence, which is lower
than the precedence of the multiplication, division and remainder operations.

4. The assignment operator (=) is evaluated last.

The rules of operator precedence specify the order C uses to evaluate expressions.1

When we say evaluation proceeds from left to right, we're referring to the associativity of
the operators. We'll see that some operators associate from right to left. Figure 2.10 sum-
marizes these rules of operator precedence for the operators we've seen so far.

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested,
the expression in the innermost pair is evalu-
ated first. If there are several pairs of parenthe-
ses “on the same level” (i.e., not nested),
they’re evaluated left to right.

Multiplication ~ Evaluated second. If there are several, they're

/ Division evaluated left to right.

% Remainder

+ Addition Evaluated third. If there are several, they’re
- Subtraction evaluated left to right.

= Assignment Evaluated last.

Fig. 2.10 | Precedence of arithmetic operators.

Sample Algebraic and C Expressions

Now let’s consider several expressions in light of the rules of operator precedence. Each
example lists an algebraic expression and its C equivalent. The following expression calcu-
lates the arithmetic mean (average) of five terms.

a+brc+d+e

5
C: m=Ca+b+c+d+e)/5;

Algebra: m =

The parentheses here are required to group the additions because division has higher pre-
cedence than addition. The entire quantity (a + b + ¢ + d + e) should be divided by 5. If
the parentheses are erroneously omitted, we obtain a + b + c + d + e / 5, which evaluates
incorrectly as

e
a+brcrd+ =

1. We use simple examples to explain the order of evaluation of expressions. Subtle issues occur in more
complex expressions that you'll encounter later in the book. We'll discuss these issues as they arise.

84 Chapter 2 Introduction to C Programming

The following expression is the equation of a straight line:

Algebra: y=mx + b

*

C: y=m?*x + b;

No parentheses are required. The multiplication is evaluated first because multiplication
has a higher precedence than addition.

The following expression contains remainder (%), multiplication, division, addition,
subtraction and assignment operations:

Algebra: z=prmodq +whkx—y

e

C: z = p r % q + w / x -Y;

6 1 2 4 3 5

The circled numbers indicate the order in which C evaluates the operators. The multipli-
cation, remainder and division are evaluated first in left-to-right order (i.., they associate
from left to right) because they have higher precedence than addition and subtraction. The
addition and subtraction are evaluated next. They’re also evaluated left to right. Finally,
the result is assigned to the variable z.

Not all expressions with several pairs of parentheses contain nested parentheses. For
example, the following expression does nor contain nested parentheses—instead, the
parentheses are said to be “on the same level.”

a*(b+c)+c*(d+e)

Evaluation of a Second-Degree Polynomial
To develop a better understanding of the rules of operator precedence, let’s see how C eval-
uates a second-degree polynomial.

The circled numbers under the statement indicate the order in which C performs the oper-
ations. There’s no arithmetic operator for exponentiation in C, so we’ve represented x? as
x * x. The C Standard Library includes the pow (“power”) function to perform expo-
nentiation. Because of some subtle issues related to the data types required by pow, we defer
a detailed explanation of pow until Chapter 4.

Suppose variables a, b, ¢ and x in the preceding second-degree polynomial are initial-
ized as follows: a=2, b =3, c =7 and x = 5. Figure 2.11 illustrates the order in which the
operators are applied.

Using Parentheses for Clarity

As in algebra, it’s acceptable to place unnecessary parentheses in an expression to make the
expression clearer. These are called redundant parentheses. For example, the preceding
statement could be parenthesized as follows:

*

y=Ca*x*x)+ (b*x)+c;

2.6 Decision Making: Equality and Relational Operators 85

Step 1. y=2%5%5+3%54+7; (Leftmost multiplication)
2 * 5 4s 10
Step 2. y =10 %5+ 3 * 5 + 7; (Leftmost multiplication)
10 * 5 is 50
Step 3. y =50+ 3 %54+ 7; (Multiplication before addition)
3 %5 1is 15
Step 4. y =50 + 15 + 7; (Leftmost addition)
50 + 15 is 65
Step 5. y =65 + 7; (Last addition)
65 + 7 is 72
Step 6. y =72 (Last operation—place 72 in'y)

Fig. 2.11 | Order in which a second-degree polynomial is evaluated.

2.6 Decision Making: Equality and Relational Operators

Executable statements either perform actions (such as calculations or input or output of
data) or make decisions (we’ll soon see several examples of these). We might make a deci-
sion in a program, for example, to determine whether a person’s grade on an exam is great-
er than or equal to 60 and whether the program should print the message
“Congratulations! You passed.” This section introduces a simple version of C’s if state-
ment that allows a program to make a decision based on the truth or falsity of a statement
of fact called a condition. If the condition is true (i.e., the condition is met), the statement
in the body of the if statement is executed. If the condition is false (i.e., the condition
isn’t met), the body statement isn’t executed. Whether the body statement is executed or
not, after the if statement completes, execution proceeds with the next statement in se-
quence after the if statement.

Conditions in if statements are formed by using the equality operators and relational
operators summarized in Fig. 2.12. The relational operators all have the same level of
precedence and they associate left to right. The equality operators have a lower level of
precedence than the relational operators and they also associate left to right. [Noze: In C,
a condition may actually be any expression thar generates a zero (false) or nonzero (true)
value.]

A syntax error occurs if the two symbols in any of the operators ==, 1=, >= and <= are sep-
arated by spaces.

a ? Common Programming Error 2.7

|

86 Chapter 2 Introduction to C Programming

Common Programming Error 2.8

\ Confusing the equality operator == with the assignment operator. To avoid this confusion,
the equality operator should be read “double equals” and the assignment operator should
be read “gets” or “Is assigned the value of.” As you'll see, confusing these operators may not
cause an easy-to-recognize compilation error, but may cause extremely subtle logic errors.

C equality or Example
Algebraic equality or relational of C
relational operator operator condition Meaning of C condition
Relational operators
> > X >y x is greater than y
< < X <y x is less than y
> >= X >=y x is greater than or equal to y
< <= X <=y x is less than or equal to y
Equality operators
= = X ==y x is equal to y
= 1= X l=y x is not equal to y

Fig. 2.12 | Equality and relational operators.

Figure 2.13 uses six if statements to compare two numbers entered by the user. If the
condition in any of these if statements is true, the printf statement associated with that
if executes. The program and three sample execution outputs are shown in the figure.

1 // Fig. 2.13: fig02_13.c

2 // Using if statements, relational

3 // operators, and equality operators.

4 #include <stdio.h>

5

6 // function main begins program execution

7 dint main(void)

8 {

9 printf("Enter two integers, and I will tell you\n");
10 printf("the relationships they satisfy: ");

11

12 int numl; // first number to be read from user

13 int num2; // second number to be read from user

14

15 scanf("%d %d", &numl, &um2); // read two integers
16

17 if (. numl == num2) {

18 printf("%d is equal to %d\n", numl, num2);

19 } // end if
20

Fig. 2.13 | Using 1f statements, relational operators, and equality operators. (Part | of 2.)

2.6 Decision Making: Equality and Relational Operators 87

21 if (numl != num2) {

22 printf("%d 1is not equal to %d\n", numl, num2);

23 } // end if

24

25 if (numl < num2) {

26 printf("%d is less than %d\n", numl, num2);

27 } // end if

28

29 if (numl > num2) {

30 printf("%d is greater than %d\n", numl, num2);

31 } // end if

32

33 if (numl <= num2) {

34 printf("%d 1is less than or equal to %d\n", numl, num2);
35 } // end if

36

37 if (numl >= num2) {

38 printf("%d 1is greater than or equal to %d\n", numl, num2);
39 } // end if

40 } // end function main

Enter two integers, and I will tell you
the relationships they satisfy: 3 7

3 is not equal to 7

3 is less than 7

3 1is less than or equal to 7

Enter two integers, and I will tell you
the relationships they satisfy: 22 12
22 is not equal to 12

22 is greater than 12

22 is greater than or equal to 12

Enter two integers, and I will tell you
the relationships they satisfy: 7 7

7 is equal to 7
7 is less than or equal to 7
7 is greater than or equal to 7

Fig. 2.13 | Using if statements, relational operators, and equality operators. (Part 2 of 2.)

The program uses scanf (line 15) to read two integers into the int variables num1 and
num2. Each conversion specifier has a corresponding argument in which a value will be
stored. The first %d converts a value to be stored in the variable num1, and the second %d
converts a value to be stored in the variable num2.

Although it'’s allowed, there should be no more than one statement per line in a program.

- ,} Good Programming Practice 2.10
S5 10

88 Chapter 2 Introduction to C Programming

=~z Common Programming Error 2.9
i’%\ Placing commas (when none are needed) between conversion specifiers in the format con-
= trol string of a scanf statement.

Comparing Numbers
The 7 f statement in lines 17-19

if (numl == num2) {
printf(, huml, num2);
} // end if

compares the values of variables numl and num2 to test for equality. If the values are equal,
the statement in line 18 displays a line of text indicating that the numbers are equal. If the
conditions are true in one or more of the if statements starting in lines 21, 25, 29, 33
and 37, the corresponding body statement displays an appropriate line of text. Indenting
the body of each i f statement and placing blank lines above and below each i f statement
enhances program readability.

—»7 Common Programming Error 2.10
i’%\‘ Placing a semicolon immediately to the right of the right parenthesis after the condition
= in an if statement.

A left brace, {, begins the body of each if statement (e.g., line 17). A corresponding
right brace, }, ends each 1 f statement’s body (e.g., line 19). Any number of statements can
be placed in the body of an 1 f statement.?

A lengthy statement may be spread over several lines. If a statement must be split across
lines, choose breaking points that make sense (such as after a comma in a comma-separated
list). If a statement is split across two or more lines, indent all subsequent lines. It’s not
correct to split identifiers.

} Good Programming Practice 2.11

Figure 2.14 lists from highest to lowest the precedence of the operators introduced in
this chapter. Operators are shown top to bottom in decreasing order of precedence. The
equals sign is also an operator. All these operators, with the exception of the assignment
operator =, associate from left to right. The assignment operator (=) associates from right
to left.

Refer to the operator precedence chart when writing expressions containing many opera-
tors. Conffirm that the operators in the expression are applied in the proper order. If you're
uncertain about the order of evaluation in a complex expression, use parentheses to group
expressions or break the statement into several simpler statements. Be sure to observe that
some of C’s aperators such as the assignment operator (=) associate from right to left rather

than from left to right.

} Good Programming Practice 2.12

2. Using braces to delimit the body of an if statement is optional when the body contains only one
statement. It’s considered good practice to always use these braces. In Chapter 3, we'll explain the
issues.

2.7 Secure C Programming 89

Operators Associativity

6] left to right
@ / % left to right
+ - left to right
< <= > >= left to right
= = left to right
= right to left

Fig. 2.14 | Precedence and associativity of the operators discussed so far.

Some of the words we’ve used in the C programs in this chapter—in particular int,
if and void—are keywords or reserved words of the language. Figure 2.15 contains the
C keywords. These words have special meaning to the C compiler, so you must be careful
not to use these as identifiers such as variable names.

In this chapter, we've introduced many important features of the C programming lan-
guage, including displaying data on the screen, inputting data from the user, performing
calculations and making decisions. In the next chapter, we build upon these techniques as
we introduce structured programming. You'll become more familiar with indentation
techniques. We'll study how to specify the order in which statements are executed—this is
called flow of control.

auto do goto signed unsigned
break double if sizeof void
case else int static volatile
char enum Tong struct while
const extern register switch

continue float return typedef

default for short union

Keywords added in C99 standard

_Bool _Complex _Imaginary inline restrict

Keywords added in C11 standard

_Alignas _Alignof _Atomic _Generic _Noreturn _Static_assert _Thread_local

Fig. 2.15 | C's keywords.

2.7 Secure C Programming

We mentioned The CERT C Secure Coding Standard in the Preface and indicated that we
would follow certain guidelines that will help you avoid programming practices that open
systems to attacks.

90 Chapter 2 Introduction to C Programming

Avoid Single-Argument printfs®

One such guideline is to avoid using printf with a single string argument. If you need to
display a string that zerminates with a newline, use the puts function, which displays its
string argument followed by a newline character. For example, in Fig. 2.1, line 8

printf();

should be written as:

puts();

We did not include \n in the preceding string because puts adds it automatically.

If you need to display a string without a terminating newline character, use printf
with fwo arguments—a "%s" format control string and the string to display. The %s con-
version specifier is for displaying a string. For example, in Fig. 2.3, line 8

printf();
should be written as:
printf(y);

Although the printfs in this chapter as written are actually zor insecure, these changes
are responsible coding practices that will eliminate certain security vulnerabilities as we get
deeper into C—we’ll explain the rationale later in the book. From this point forward, we
use these practices in the chapter examples and you should use them in your exercise solu-
tions.

scanf and printf, scanf_s and printf_s

We introduced scanf and printf in this chapter. We'll be saying more about these in sub-
sequent Secure C Coding Guidelines sections, beginning in Section 3.13. We'll also dis-
cuss scanf_s and printf_s, which were introduced in C11.

3. For more information, see CERT C Secure Coding rule FIO30-C (www.securecoding.cert.org/
confluence/display/seccode/FI030-C.+Exclude+user+input+from+format+strings).In Chap—
ter 6’s Secure C Programming section, we'll explain the notion of user input as referred to by this CERT
guideline.

Summary

Section 2.1 Introduction
* The C language facilitates a structured and disciplined approach to computer-program design.

Section 2.2 A Simple C Program: Printing a Line of Text

* Comments (p. 72) begin with //. Comments document programs (p. 72) and improve program
readability. C also supports multi-line comments that begin with /* and end with #/ (p. 73).

* Comments do not cause the computer to perform any action when the program is run. They’re
ignored by the C compiler and do not cause any machine-language object code to be generated.

* Lines beginning with # are processed by the preprocessor before the program is compiled. The
#include directive tells the preprocessor (p. 73) to include the contents of another file.

Summary 91

The <stdio.h> header (p. 73) contains information used by the compiler when compiling calls
to standard input/output library functions such as printf.

The function main is a part of every C program. The parentheses after main indicate that main is
a program building block called a function (p. 73). C programs contain one or more functions,
one of which must be main. Every program in C begins executing at the function main.

Functions can return information. The keyword int to the left of main indicates that main “re-
turns” an integer (whole-number) value.

Functions can receive information when they’re called upon to execute. The void in parentheses
after main indicates that main does not receive any information.

A left brace, {, begins the body of every function (p. 73). A corresponding right brace, }, ends
each function (p. 73). This pair of braces and the portion of the program between the braces is

called a block.
The printf function (p. 74) instructs the computer to display information on the screen.
A string is sometimes called a character string, a message or a literal (p. 74).

Every statement (p. 74) must end with a semicolon (also known as the statement terminator;
p. 74).

In\n (p. 74), the backslash (\) is called an escape character (p. 74). When encountering a back-
slash in a string, the compiler looks ahead at the next character and combines it with the back-
slash to form an escape sequence (p. 74). The escape sequence \n means newline.

When a newline appears in the string output by a printf, the newline causes the cursor to posi-
tion to the beginning of the next line on the screen.

The double backslash (\\) escape sequence can be used to place a single backslash in a string.

The escape sequence \" represents a literal double-quote character.

Section 2.3 Another Simple C Program: Adding Two Integers

A variable (p. 77) is a location in memory where a value can be stored for use by a program.
Variables of type int (p. 77) hold integer values, i.e., whole numbers such as 7, 11, 0, 31914.
All variables must be defined with a name and a data type before they can be used in a program.

A variable name in C is any valid identifier. An identifier (p. 77) is a series of characters consist-
ing of letters, digits and underscores (_) that does not begin with a digit.

C is case sensitive (p. 77)—uppercase and lowercase letters are different in C.

Standard Library function scanf (p. 78) can be used to obtain input from the standard input,
which is usually the keyboard.

The scanf format control string (p. 78) indicates the type(s) of data that should be input.

The %d conversion specifier (p. 78) indicates that the data should be an integer (the letter d
stands for “decimal integer”). The % in this context is treated by scanf (and printf) as a special
character that begins a conversion specifier.

The arguments that follow scanf’s format control string begin with an ampersand (&—called
the address operator (p. 78)—followed by a variable name. The ampersand, when combined
with a variable name, tells scanf the location in memory at which the variable is located. The
computer then stores the value for the variable at that location.

Most calculations are performed in assignment statements (p. 79).
The = operator and the + operator are binary operators—each has two operands (p. 79).

In a printf that specifies a format control string as its first argument the conversion specifiers
indicate placeholders for data to output.

92 Chapter 2 Introduction to C Programming

Section 2.4 Memory Concepts

Variable names correspond to locations in the computer’s memory. Every variable has a name,
a type and a value.

Whenever a value is placed in a memory location, the value replaces the previous value in that
location; thus, placing a new value into a memory location is said to be destructive (p. 80).

When a value is read from a memory location, the process is said to be nondestructive (p. 81).

Section 2.5 Arithmetic in C

In algebra, if we want to multiply « times 4, we can simply place these single-letter variable names
side by side, as in #b. In C, however, if we were to do this, ab would be interpreted as a single,
two-letter name (or identifier). Therefore, C (like other programming languages, in general) re-
quires that multiplication be explicitly denoted by using the * operator, as in a * b.

Arithmetic expressions (p. 81) in C must be written in straight-line form (p. 82) to facilitate
entering programs into the computer. Thus, expressions such as “a divided by b” must be written
as a/b, so that all operators and operands appear in a straight line.

Parentheses are used to group terms in C expressions in much the same manner as in algebraic
expressions.

C evaluates arithmetic expressions in a precise sequence determined by the following rules of op-
erator precedence (p. 82), which are generally the same as those followed in algebra.

Multiplication, division and remainder operations are applied first. If an expression contains
several multiplication, division and remainder operations, evaluation proceeds from left to right.
Multiplication, division and remainder are said to be on the same level of precedence.

Addition and subtraction operations are evaluated next. If an expression contains several addi-
tion and subtraction operations, evaluation proceeds from left to right. Addition and subtraction
also have the same level of precedence, which is lower than the precedence of the multiplication,
division and remainder operators.

The rules of operator precedence specify the order C uses to evaluate expressions. The associativity
(p- 83) of the operators specifies whether they evaluate from left to right or from right to left.

Section 2.6 Decision Making: Equality and Relational Operators

Executable C statements either perform actions or make decisions.

C’s if statement (p. 85) allows a program to make a decision based on the truth or falsity of a
statement of fact called a condition (p. 85). If the condition is met (i.e., the condition is true;
p. 85) the statement in the body of the 1 f statement executes. If the condition isn’t met (i.e., the
condition is false; p. 85) the body statement does not execute. Whether the body statement is
executed or not, after the if statement completes, execution proceeds with the next statement
after the if statement.

Conditions in i f statements are formed by using the equality and relational operators (p. 85).

The relational operators all have the same level of precedence and associate left to right. The
equality operators have a lower level of precedence than the relational operators and they also as-
sociate left to right.

To avoid confusing assignment (=) and equality (==), the assignment operator should be read
“gets” and the equality operator should be read “double equals.”

In C programs, white-space characters such as tabs, newlines and spaces are normally ignored.
So, statements may be split over several lines. It’s not correct to split identifiers.

Keywords (p. 89; or reserved words) have special meaning to the C compiler, so you cannot use
them as identifiers such as variable names.

Self-Review Exercises 93

Section 2.7 Secure C Programming
* One practice to help avoid leaving systems open to attacks is to avoid using printf with a single
string argument.

* To display a string followed by a newline character, use the puts function (p. 90), which displays
its string argument followed by a newline character.

* To display a string without a trailing newline character, you can use printf with the "%s" con-
version specifier (p. 90) as the first argument and the string to display as the second argument.

Self-Review Exercises

2.1

2.2

2.3

Fill in the blanks in each of the following.

a)
b)
)
d)
e)

f)
g)
h)
i)
j)

Every C program begins execution at the function .

Every function’s body begins with and ends with

Every statement ends with a(n) .

The standard library function displays information on the screen.

The escape sequence \n represents the character, which causes the cursor
to position to the beginning of the next line on the screen.

The Standard Library function is used to obtain data from the keyboard.
The conversion specifier is used in a scanf format control string to indicate
that an integer will be input and in a printf format control string to indicate that an
integer will be output.

Whenever a new value is placed in a memory location, that value overrides the previous
value in that location. This process is said to be .

When a value is read from a memory location, the value in that location is preserved;
this process is said to be

The statement is used to make decisions.

State whether each of the following is zrue or false. If false, explain why.

a)
b)

<)

suoee

Function printf always begins printing at the beginning of a new line.

Comments cause the computer to display the text after // on the screen when the pro-
gram is executed.

The escape sequence \n when used in a printf format control string causes the cursor
to position to the beginning of the next line on the screen.

All variables must be defined before they’re used.

All variables must be given a type when they’re defined.

C considers the variables number and NuMbEr to be identical.

Definitions can appear anywhere in the body of a function.

All arguments following the format control string in a printf function must be preced-
ed by an ampersand (&).

The remainder operator (%) can be used only with integer operands.

The arithmetic operators *, /, %, + and - all have the same level of precedence.

A program that prints three lines of output must contain three printf statements.

Write a single C statement to accomplish each of the following:

a)
b)

o)
d)
e)
f)

Define the variables c, thisvariable, 76354 and number to be of type int.

Prompt the user to enter an integer. End your prompting message with a colon (:) fol-
lowed by a space and leave the cursor positioned after the space.

Read an integer from the keyboard and store the value entered in integer variable a.

If number is not equal to 7, print "The variable number is not equal to 7."

Print the message "This is a C program." on one line.

Print the message "This is a C program." on two lines so that the first line ends with C.

94 Chapter 2 Introduction to C Programming

g) Print the message "This is a C program." with each word on a separate line.
h) Print the message "This is a C program." with the words separated by tabs.

2.4 Write a statement (or comment) to accomplish each of the following:
a) State that a program will calculate the product of three integers.
b) Prompt the user to enter three integers.
¢) Define the variables x, y and z to be of type int.
d) Read three integers from the keyboard and store them in the variables x, y and z.
e) Define the variable result, compute the product of the integers in the variables x, y and
z, and use that product to initialize the variable result.
f) Print "The product is" followed by the value of the integer variable result.

2.5 Using the statements you wrote in Exercise 2.4, write a complete program that calculates
the product of three integers.

2.6 Identify and correct the errors in each of the following statements:

a) printf(, &number);
b) scanf(, &numberl, number2);
¢ if (c<7);{

printf();

}

d) if Cc=>7){

printf();

Answers to Self-Review Exercises

2.1 a) main. b) left brace ({), right brace (}). ¢) semicolon. d) printf. ¢) newline. f) scanf.
g) %d. h) destructive. i) nondestructive. j) if.

2.2 a) False. Function printf always begins printing where the cursor is positioned,
and this may be anywhere on a line of the screen.

b) False. Comments do not cause any action to be performed when the program is exe-
cuted. They’re used to document programs and improve their readability.

c) True.

d) True.

e) True.

f) False. C is case sensitive, so these variables are unique.

g) True.

h) False. Arguments in a printf function ordinarily should not be preceded by an am-
persand. Arguments following the format control string in a scanf function ordinarily
should be preceded by an ampersand. We'll discuss exceptions to these rules in
Chapter 6 and Chapter 7.

i) True.

j) False. The operators *, / and % are on the same level of precedence, and the operators +
and - are on a lower level of precedence.

k) False. A printf statement with multiple \n escape sequences can print several lines.

2.3 a) int c, thisVariable, 76354, number;
b) printf();
c) scanf(, &);
d) if (number !=7) {
printf();

Exercises 95

e) printf("This is a C program.\n");

ﬁ printf("This is a C\nprogram.\n");

g) printf("This\nis\na\nC\nprogram.\n");
h) printf("This\tis\ta\tC\tprogram.\n");

2.4 a) // Calculate the product of three integers
b) printf("Enter three integers: ");
c) int x, vy, z;
d) scanf("%d%d%d", &, &y, &z);
e) int result = x * y * z;
f) printf("The product is %d\n", result);

2.5 See below.

1 // Calculate the product of three integers

2 #include <stdio.h>

3

4 int main(void)

5 {

6 printf("Enter three integers: "); // prompt

7

8 int x, y, z; // declare variables

9 scanf("%d%d%d", &x, &y, &z); // read three integers
10

11 int result = x * y * z; // multiply values

12 printf("The product 1is %d\n", result); // display result

13 } // end function main

2.6 a) Error: &umber.

Correction: Eliminate the & We discuss exceptions to this later.

b) Error: number2 does not have an ampersand.
Correction: number2 should be &umber2. Later in the text we discuss exceptions to this.

¢) Error: Semicolon after the right parenthesis of the condition in the i statement.
Correction: Remove the semicolon after the right parenthesis. [/Voze: The result of this
error is that the printf statement will be executed whether or not the condition in the
if statement is true. The semicolon after the right parenthesis is considered an empty
statement—a statement that does nothing.]

d) Error: => is not an operator in C.
Correction: The relational operator => should be changed to >= (greater than or equal to).

Exercises

2.7 Identify and correct the errors in each of the following statements. (Note: There may be
more than one error per statement.)
a) scanf("&d", %value);
b) printf("The sum of %c and %c is %c /n", X, y);
c) a+ b+ c=sum
d) if (number >= Targest);
largest == number;
e) \\ Program to determine the largest of three integers
f) scanf("%f", float);
g) printf("Remainder of %d divided by %d is \n", x, v, x / y);
h) if (x = y);
printf("%d is greater than or equal to %d\n, x, y");

96

2.8

2.9

2.11

2.12

Chapter 2 Introduction to C Programming

i) print(X *y);

j) scanf(, & &y &z);

Fill in the blanks in each of the following:

a) All must be declared before being used in a program.
b) Cis . Uppercase and lowercase letters are different in C.
¢) Single-line comments begin with

d) are words reserved by C and cannot be used.

e) and are ignored by the compiler.

Write a single C statement or line that accomplishes each of the following:

a) Print the message “Have a nice day.”

b) Assign the sum of variables b and c to variable a.

¢) Check if the value of variable a is greater than variable b. If it is, store the difference of
the two in variable c.

d) Input three integer values from the keyboard and place them in int variables p, g, and r.

State which of the following are true and which are false. If false, explain your answer.

a) C regards the functions main and Main as identical.

b) The associativity of the operators specifies whether they evaluate from left to right or
from right to left.

¢) The statement if(a = b) checks whether the variables a and b are equal.

d) Conditions in 1 f statements are formed by using assignment operators.

e) The following are all valid variable names: _3g, my_val, h22, 123greetings, July98.

Fill in the blanks in each of the following:

a) The statement allows a program to perform different actions based on a
condition.

b) If the result of an integer division, where both the numerator and the denominator are
integers, is a fraction, the fractional part is .

¢) The directive tells the preprocessor to include the contents of the input/
output stream header files.

What, if anything, prints when each of the following statements is performed? If nothing

prints, then answer “Nothing.” Assume a = 15, b = 4andc = 7.

2.14

a) printf(,a%b);

b) printf(,a%c+b);

c) printf(DE

d) printf(DL

e) printf(,a+b);

f) c=a+b;

g) scanf(, &, &b);

h) // printf("Now a and b changes to %d and %d", a, b);
1) printf(DE

Which, if any, of the following C statements contain variables whose values are replaced?
a) printf(D

b) scanf(, &, &b);

Cc) sum = a + b;

d) printf(, sum);

Given the equation y = ax3 — bx? — 6, which of the following, if any, are correct C statements

for this equation?

o % %

Q) y= a*x*x*x-b*x¥*x-6;
b)y=a~kxs‘<X*Xs'rb*Xs‘cx_;
c)a*(x*x*x)—b*x*x*(—);

Exercises 97

d) a* (x*x*x)-b*(x*x)-6;
e) a*x*x*x-(b*x*x-)
f)(a*x* — b * ox *) - 6;
2.15 State the order of evaluation of the operators in each of the following C statements and
show the value of x after each statement is performed.
Q) x=8+15% (6-2) -1;
b) x=5%5+5%5-5/5;
Q x=(5%7*(5+C7*5/C7))));
2.16 (Arithmetic) Write a program that asks the user to enter two numbers, obtains them from
the user and prints their sum, product, difference, quotient and remainder.

2.17 (Final Velocity) Write a program than asks the user to enter the initial velocity and acceler-
ation of an object, and the time that has elapsed, places them in the variables u, a, and t, and prints
the final velocity, v, and distance traversed, s, using the following equations.

Q) v=u+at

b) s=uwut+ latz

2

2.18 (Comparing Values) Write a program that asks the user to enter the highest rainfall ever in
one season for a country, and the rainfall in the current year for that country, obtains the values from
the user, checks if the current rainfall exceed the highest rainfall and prints an appropriate message
on the screen. If the current rainfall is higher, it assigns that value as the highest rainfall ever. Use
only the single-selection form of the if statement you learned in this chapter.

2.19 (Arithmetic, Largest Value and Smallest Value) Write a program that inputs three different
integers from the keyboard, then prints the sum, the average, the product, the smallest and the larg-
est of these numbers. Use only the single-selection form of the 7 f statement you learned in this chap-
ter. The screen dialogue should appear as follows:

Enter three different integers: 13 27 14
Sum is 54

Average is 18

Product is 4914

Smallest is 13

Largest is 27

2.20 (Converting from seconds to hours, minutes and seconds) Write a program that asks the
user to enter the total time elapsed, in seconds, since an event and converts the time to hours,
minutes and seconds. The time should be displayed as hours:minutes:seconds. [Hin#: Use the
remainder operator]

2.21 (Shapes with Asterisks) Write a program that prints the following shapes with asterisks.

EEEE
*

w ok % % %
Ed
%

Fededededehddd ke * *

2.22 What does the following code print?

printf();

98 Chapter 2 Introduction to C Programming

2.23 (Largest and Smallest Integers) Write a program that reads in three integers and then deter-
mines and prints the largest and the smallest integers in the group. Use only the programming tech-
niques you have learned in this chapter.

2.24 (Odd or Even) Write a program that reads an integer and determines and prints whether
i’s odd or even. [Hint: Use the remainder operator. An even number is a multiple of two. Any mul-
tiple of two leaves a remainder of zero when divided by 2.]

2.25 Printyour initials in block letters down the page. Construct each block letter out of the let-
ter it represents, as shown on the top of the next page:

PPPPPPPPP
P P
P P
P P
PP

J]
]
]
]
13333313

DDDDDDDDD
D D
D D
D D
DDDDD

2.26 (Multiples) Write a program that reads in two integers and determines and prints whether
the first is a multiple of the second. [Hint: Use the remainder operator.]

2.27 (Checkerboard Pattern of Asterisks) Display the following checkerboard pattern with eight
printf statements and then display the same pattern with as few printf statements as possible.

2.28 Distinguish between the terms fatal error and nonfatal error. Why might you prefer to ex-
perience a fatal error rather than a nonfatal error?

2.29 (Integer Value of a Character) Here’s a peek ahead. In this chapter you learned about inte-
gers and the type int. C can also represent uppercase letters, lowercase letters and a considerable
variety of special symbols. C uses small integers internally to represent each different character. The
set of characters a computer uses together with the corresponding integer representations for those
characters is called that computer’s character set. You can print the integer equivalent of uppercase
A, for example, by executing the statement

printf(,);

Write a C program that prints the integer equivalents of some uppercase letters, lowercase letters,
digits and special symbols. As a minimum, determine the integer equivalents of the following:
ABCabc012$ *+ /and the blank character.

Making a Difference 99

2.30 (Separating Digits in an Integer) Write a program that inputs one five-digit number, sep-
arates the number into its individual digits and prints the digits separated from one another by three
spaces each. [Hinz: Use combinations of integer division and the remainder operation.] For exam-
ple, if the user types in 42139, the program should print

2.31 (Table of Squares and Cubes) Using only the techniques you learned in this chapter, write
a program that calculates the squares and cubes of the numbers from 0 to 10 and uses tabs to print
the following table of values:

number square cube

0 0 0

1 1 1

2 4 8

3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

Making a Difference

2.32 (Body Mass Index Calculator) We introduced the body mass index (BMI) calculator in
Exercise 1.12. The formulas for calculating BMI are

weightInPounds x 703

BMI =
heightinlnches x heightInlnches

or

BMI = weightInKilograms
heightInMeters X heightInMeters

Create a BMI calculator application that reads the user’s weight in pounds and height in inches
(or, if you prefer, the user’s weight in kilograms and height in meters), then calculates and displays
the user’s body mass index. Also, the application should display the following information from
the Department of Health and Human Services/National Institutes of Health so the user can eval-
uate his/her BMI:

BMI VALUES

Underweight: less than 18.5
Normal: between 18.5 and 24.9
Overweight: between 25 and 29.9
Obese: 30 or greater

[Note: In this chapter, you learned to use the int type to represent whole numbers. The BMI calcu-
lations when done with int values will both produce whole-number results. In Chapter 4 you'll
learn to use the double type to represent numbers with decimal points. When the BMI calculations
are performed with doubTes, they’ll both produce numbers with decimal points—these are called
“floating-point” numbers.]

100 Chapter 2 Introduction to C Programming

2.33 (Car-Pool Savings Calculator) Research several car-pooling websites. Create an application
that calculates your daily driving cost, so that you can estimate how much money could be saved by
car pooling, which also has other advantages such as reducing carbon emissions and reducing traffic
congestion. The application should input the following information and display the user’s cost per
day of driving to work:

a) Total miles driven per day.

b) Cost per gallon of gasoline.

¢) Average miles per gallon.

d) Parking fees per day.

e) Tolls per day.

Structured Program
Development in C

Objectives
In this chapter, you'll:

Use basic problem-solving
techniques.

Develop algorithms through
the process of top-down,
stepwise refinement.

Use the 1 selection
statement and the i f...else
selection statement to select
actions.

Use the whi e iteration
statement to execute
statements in a program
repeatedly.

Use counter-controlled
iteration and sentinel-
controlled iteration.

Learn structured
programming.

Use increment, decrement
and assignment operators.

102 Chapter 3 Structured Program Development in C

3.1 Introduction 3.9 Formulating Algorithms with Top-
3.2 Algorithms Down, Stepwise Refinement Case
3.3 Pseudocode Study 2: Sentinel-Controlled Iteration

3.10 Formulating Algorithms with Top-
Down, Stepwise Refinement Case
Study 3: Nested Control Statements

3.11 Assignment Operators

3.4 Control Structures

3.5 The if Selection Statement

3.6 The if...else Selection Statement
3.7 ThewhiTe Iteration Statement

3.8 Formulating Algorithms Case Study I:
Counter-Controlled Iteration

3.12 Increment and Decrement Operators
3.13 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

3.1 Introduction

Before writing a program to solve a particular problem, we must have a thorough under-
standing of the problem and a carefully planned solution approach. Chapters 3 and 4 dis-
cuss techniques that facilitate the development of structured computer programs. In
Section 4.12, we present a summary of the structured programming techniques developed
here and in Chapter 4.

3.2 Algorithms

The solution to any computing problem involves executing a series of actions in a specific
order. A procedure for solving a problem in terms of

1. the actions to be executed, and
2. the order in which these actions are to be executed

is called an algorithm. The following example demonstrates that correctly specifying the
order in which the actions are to be executed is important.

Consider the “rise-and-shine algorithm” followed by one junior executive for getting
out of bed and going to work: (1) Get out of bed, (2) take off pajamas, (3) take a shower,
(4) get dressed, (5) eat breakfast, (6) carpool to work. This routine gets the executive to
work well prepared to make critical decisions. Suppose that the same steps are performed
in a slightly different order: (1) Get out of bed, (2) take off pajamas, (3) get dressed, (4)
take a shower, (5) eat breakfast, (6) carpool to work. In this case, our junior executive
shows up for work soaking wet. Specifying the order in which statements are to be exe-
cuted in a computer program is called program control. In this and the next chapter, we
investigate C’s program control capabilities.

3.3 Pseudocode

Pseudocode is an artificial and informal language that helps you develop algorithms. The
pseudocode we present here is particularly useful for developing algorithms that will be
converted to structured C programs. Pseudocode is similar to everyday English; it’s conve-
nient and user friendly although it’s 7oz an actual computer programming language.

3.4 Control Structures 103

Pseudocode programs are not executed on computers. Rather, they merely help you
“think out” a program before attempting to write it in a programming language like C.

Pseudocode consists purely of characters, so you may conveniently type pseudocode
programs into a computer using a text editor program. A carefully prepared pseudocode
program can be easily converted to a corresponding C program. This is done in many cases
simply by replacing pseudocode statements with their C equivalents.

Pseudocode consists only of action and decision statements—those that are executed
when the program has been converted from pseudocode to C and is run in C. Definitions
are nor executable statements—they’re simply messages to the compiler. For example, the
definition

int 1i;
tells the compiler the type of variable i and instructs the compiler to reserve space in mem-
ory for the variable. But this definition does 70t cause any action—such as input, output,
a calculation or a comparison—to occur when the program is executed. Some program-

mers choose to list each variable and briefly mention the purpose of each at the beginning
of a pseudocode program.

3.4 Control Structures

Normally, statements in a program are executed one after the other in the order in which
they’re written. This is called sequential execution. Various C statements we’ll soon dis-
cuss enable you to specify that the next statement to be executed may be other than the
next one in sequence. This is called transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control
was the root of a great deal of difficulty experienced by software-development groups. The
finger of blame was pointed at the goto statement that allows you to specify a transfer of
control to one of many possible destinations in a program. The notion of so-called struc-
tured programming became almost synonymous with “goto elimination.”

The research of Bohm and Jacopini! had demonstrated that programs could be
written without any goto statements. The challenge of the era was for programmers to shift
their styles to “goto-less programming.” It was not until well into the 1970s that the pro-
gramming profession started taking structured programming seriously. The results were
impressive, as software-development groups reported reduced development times, more
frequent on-time delivery of systems and more frequent within-budget completion of soft-
ware projects. Programs produced with structured techniques were clearer, easier to debug
and modify and more likely to be bug free in the first place.?

Bohm and Jacopini’s work demonstrated that all programs could be written in terms
of only three control structures, namely the sequence structure, the selection structure
and the iteration structure. The sequence structure is simple—unless directed otherwise,
the computer executes C statements one after the other in the order in which they’re
written. The flowchart segment of Fig. 3.1 illustrates C’s sequence structure.

1. C.Bohm and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two For-
mation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336-371.
2. Asyoull see in Section 14.10, there are some special cases in which the goto statement is useful.

104 Chapter 3 Structured Program Development in C

Flowcharts

A flowchart is a graphical representation of an algorithm or of a portion of an algorithm.
Flowcharts are drawn using certain special-purpose symbols such as recrangles, diamonds,
rounded rectaingles, and small circles; these symbols are connected by arrows called flowlines.

Like pseudocode, flowcharts are useful for developing and representing algorithms,
although pseudocode is preferred by most programmers. Flowcharts clearly show how
control structures operate; that’s what we use them for in this text.

Consider the flowchart for the sequence structure in Fig. 3.1. We use the rectangle
symbol, also called the action symbol, to indicate any type of action including a calcula-
tion or an input/output operation. The flowlines in the figure indicate the order in which
the actions are performed—Ifirst, grade is added to total, then 1 is added to counter. C
allows us to have as many actions as we want in a sequence structure. As we’'ll soon see,
anywhere a single action may be placed, we may place several actions in sequence.

!

add grade to total total = total + grade;
add | to counter counter = counter + 1;

:

Fig. 3.1 | Flowcharting C's sequence structure.

When drawing a flowchart that represents a complete algorithm, the first symbol we
use is a rounded rectangle symbol containing the word “Begin.” The last symbol is a
rounded rectangle containing the word “End.” When drawing only a portion of an algo-
rithm as in Fig. 3.1, we omit the rounded rectangle symbols in favor of using small circle
symbols, also called connector symbols.

Perhaps the most important flowcharting symbol is the diamond symbol, also called
the decision symbol, which indicates that a decision is to be made. We'll discuss the
diamond symbol in the next section.

Selection Statements in C

C provides three types of selection structures in the form of statements. The if selection
statement (Section 3.5) either selects (performs) an action if a condition is #rue or skips the
action if the condition is false. The if...eTse selection statement (Section 3.6) performs
an action if a condition is z7ue and performs a different action if the condition is false. The
switch selection statement (discussed in Chapter 4) performs one of many different ac-
tions, depending on the value of an expression. The 1f statement is called a single-selec-
tion statement because it selects or ignores a single action. The if...eTse statement is
called a double-selection statement because it selects between two different actions. The
switch statement is called a multiple-selection statement because it selects among many
different actions.

3.5 The if Selection Statement 105

Iteration Statements in C
C provides three types of iteration structures in the form of statements, namely while
(Section 3.7), do...whiTe, and for (both discussed in Chapter 4).

That’s all there is. C has only seven control statements: sequence, three types of
selection and three types of iteration. Each C program is formed by combining as many of
each type of control statement as is appropriate for the algorithm the program implements.
As with the sequence structure of Fig. 3.1, we'll see that the flowchart representation of
each control statement has two small circle symbols, one at the ensry point to the control
statement and one at the exir point. These single-entry/single-exit control statements
make it easy to build clear programs. We can attache the control-statement flowchart seg-
ments to one another by connecting the exit point of one control statement to the entry
point of the next. This is much like the way in which a child stacks building blocks, so we
call this control-statement stacking. We’ll learn that there’s only one other way control
statements may be connected—a method called control-statement nesting. Thus, any C
program we’ll ever need to build can be constructed from only seven different types of con-
trol statements combined in only two ways. This is the essence of simplicity.

3.5 The if Selection Statement

Selection statements are used to choose among alternative courses of action. For example,
suppose the passing grade on an exam is 60. The pseudocode statement

If students grade is greater than or equal ro 60
Print “Passed”

determines whether the condition “student’s grade is greater than or equal to 60” is true
or false. If the condition is true, then “Passed” is printed, and the next pseudocode state-
ment in order is “performed” (remember that pseudocode isn’t a real programming lan-
guage). If the condition is false, the printing is ignored, and the next pseudocode statement
in order is performed.

The preceding pseudocode If statement may be written in C as

if (grade >=) {
puts(DE;
} // end if

Notice that the C code corresponds closely to the pseudocode (of course you’ll also need
to declare the int variable grade). This is one of the properties of pseudocode that makes
it such a useful program-development tool. The second line of this selection statement is
indented. Such indentation is optional, but it’s highly recommended, as it helps emphasize
the inherent structure of structured programs. The C compiler ignores white-space char-
acters such as blanks, tabs and newlines used for indentation and vertical spacing.

The flowchart of Fig. 3.2 illustrates the single-selection 1f statement. This flowchart
contains what is perhaps the most important flowcharting symbol—the diamond symbol,
also called the decision symbol, which indicates that a decision is to be made. The decision
symbol contains an expression, such as a condition, that can be either true or false. The
decision symbol has zwo flowlines emerging from it. One indicates the direction to take
when the expression in the symbol is true and the other the direction to take when the
expression is false. Decisions can be based on conditions containing relational or equality

106 Chapter 3 Structured Program Development in C

operators. In fact, a decision can be based on any expression—if the expression evaluates
to zero, it’s treated as false, and if it evaluates to nonzero, it’s treated as true.

true

grade >= 60 —> print “Passed”

false

Q=

Fig. 3.2 | Flowcharting the single-selection if statement.

The i f statement, too, is a single-entry/single-exit statement. We'll soon learn that the
flowcharts for the remaining control structures can also contain (besides small circle sym-
bols and flowlines) only rectangle symbols to indicate the actions to be performed, and
diamond symbols to indicate decisions to be made. This is the action/decision model of pro-
gramming we've been emphasizing.

We can envision seven bins, each containing only control-statement flowcharts of one
of the seven types. These flowchart segments are empty—nothing is written in the rectan-
gles and nothing in the diamonds. Your task, then, is assembling a program from as many
of each type of control statement as the algorithm demands, combining them in only zwo
possible ways (stacking or nesting), and then filling in the actions and decisions in a manner
appropriate for the algorithm. We’ll discuss the variety of ways in which actions and deci-
sions may be written.

3.6 The if...else Selection Statement

The 1 f selection statement performs an indicated action only when the condition is true;
otherwise the action is skipped. The if...else selection statement allows you to specify
that different actions are to be performed when the condition is true and when it’s false.
For example, the pseudocode statement

If student’s grade is greater than or equal ro 60
Print “Passed”
else

Print “Failed”

prints Passed if the student’s grade is greater than or equal to 60 and Fziled if the student’s
grade is less than 60. In either case, after printing occurs, the next pseudocode statement
in sequence is “performed.” The body of the else is also indented.

} Good Programming Practice 3.1

Indent both body statements of an if...else statement (in both pseudocode and C).

3.6 The iTf...else Selection Statement 107

If there are several levels of indentation, each level should be indented the same additional
amount of space.

} Good Programming Practice 3.2
~, Lo ™

The preceding pseudocode If.. . else statement may be written in C as

if (grade >=) {
puts(DE;
} // end if
else {
puts(DE;

} // end else

The flowchart of Fig. 3.3 illustrates the flow of control in the if...else statement.
Once again, besides small circles and arrows, the only symbols in the flowchart are rectan-
gles (for actions) and a diamond (for a decision).

!

false true
print “Failed” -~ grade >= 60 — print “Passed”

-

Fig. 3.3 | Flowcharting the double-selection if...e1se statement.

C provides the conditional operator (?:), which is closely related to the if...else
statement. The conditional operator is C’s only ternary operator—it takes three operands.
These together with the conditional operator form a conditional expression. The first
operand is a condition. The second operand is the value for the entire conditional
expression if the condition is #ue and the third operand is the value for the entire condi-
tional expression if the condition is false. For example, the puts statement

puts(grade >= ? :);

contains as its argument a conditional expression that evaluates to the string "Passed" if
the condition grade >= 60 is true and to the string "Failed" if the condition is false. The
puts statement performs in essentially the same way as the preceding i f...e1se statement.

The second and third operands in a conditional expression can also be actions to be
executed. For example, the conditional expression

grade >= ? puts() : puts();

is read, “If grade is greater than or equal to 60, then puts("Passed"), otherwise
puts("Failed").” This, too, is comparable to the preceding if...else statement. Condi-
tional operators can be used in places where 1f...e1se statements cannot, including expres-
sions and arguments to functions (like printf).

108 Chapter 3 Structured Program Development in C

- Error-Prevention Tip 3.1
Use expressions of the same type for the second and third operands of the conditional
operator (?:) to avoid subtle errors.

Nested iF...else Statements

Nested if...else statements test for multiple cases by placing 1f...eTse statements inside
if...else statements. For example, the following pseudocode statement will print A for
exam grades greater than or equal to 90, B for grades greater than or equal to 80 (but less
than 90), C for grades greater than or equal to 70 (but less than 80), D for grades greater
than or equal to 60 (but less than 70), and F for all other grades.

If student’s grade is greater than or equal to 90
Print ‘A7
else
If student’s grade is greater than or equal to 80
Print “B”
else
If student’s grade is greater than or equal to 70
Print “‘C”
else
If student’s grade is greater than or equal to 60
Print “D”
else

Print “F”

This pseudocode may be written in C as

if (grade >= 90) {
putsC "A");
} // end if
else {
if (grade >= 80) {
puts("B");
} // end if
else {
if (grade >= 70) {
puts("C");
} // end if
else {
if (grade >= 60) {
putsC "D");
} // end if
else {
puts("F");
} // end else
} // end else
} // end else
} // end else

3.6 The iTf...else Selection Statement 109

If the variable grade is greater than or equal to 90, all four conditions will be true, but only
the puts statement after the first test will be executed. After that puts is executed, the else
part of the “outer” if...else statement is skipped.

You may prefer to write the preceding i f statement as

if (grade >=) {
puts()

} // end if

else if (grade >=) {
puts();

} // end else if

else if (grade >=) {
puts(N

} // end else if

else if (grade >=) {
puts(N

} // end else if

else {
puts()N

} // end else

As far as the C compiler is concerned, both forms are equivalent. The latter form is popular
because it avoids the deep indentation of the code to the right. Such indentation often
leaves little room on a line, forcing lines to be split and decreasing program readability.
The 1 f selection statement expects only one statement in its body—if you have only one
statement in the if’s body, you do not need to enclose it in braces. To include several state-
ments in the body of an i, you must enclose the set of statements in braces ({ and }). A set
of statements contained within a pair of braces is called a compound statement or a block.

Software Engineering Observation 3.1
A compound statement can be placed anywhere in a program that a single statement can

=2 be placed.

The following example includes a compound statement in the else part of an
if...else statement.

if (grade >=) {

puts(L
} // end if
else {
puts(L
puts();

} // end else

In this case, if grade is less than 60, the program executes both puts statements in the body
of the e1se and prints

Failed.
You must take this course again.

The braces surrounding the two statements in the else clause are important. Without
them, the statement

puts();

110 Chapter 3 Structured Program Development in C

would be outside the body of the else part of the if and would execute regardless of whether
the grade was less than 60, so even a passing student would have to take the course again!

<» Error-Prevention Tip 3.2

ﬁ Always include your control statements’ bodies in braces ({ and }), even if those bodies
. contain only a single statement. This solves the "dangling-else” problem, which we dis-
cuss in Exercises 3.30-3.31.

A syntax error is caught by the compiler. A Jlogic error has its effect at execution time.
A faral logic error causes a program to fail and terminate prematurely. A nonfatal logic error
allows a program to continue executing but to produce incorrect results.

Just as a compound statement can be placed anywhere a single statement can be
placed, it’s also possible to have no statement at all, i.e., the empty statement. The empty
statement is represented by placing a semicolon (;) where a statement would normally be.

Common Programming Error 3.1

Placing a semicolon after the condition in an if statement as in if (grade >= 60) ; leads
to a logic error in single-selection if statements and a syntax error in double-selection if
statements.

<= Error-Prevention Tip 3.3
ﬁ Typing the beginning and ending braces of compound statements before typing the indi-
vidual statements within the braces helps avoid omitting one or both of the braces, pre-
venting syntax errors and logic errors (where both braces are indeed required).

3.7 The while Iteration Statement

An iteration statement (also called an repetition statement or loop) allows you to specify
that an action is to be repeated while some condition remains true. The pseudocode state-
ment

While there are more items on my shopping list
Purchase next item and cross it off my list

describes the iteration that occurs during a shopping trip. The condition, “there are more
items on my shopping list” may be true or false. If it’s true, then the action, “Purchase next
item and cross it off my list” is performed. This action will be performed repeatedly while
the condition remains true. The statement(s) contained in the while iteration statement
constitute the body of the while. The while statement body may be a single statement or a
compound statement.

Eventually, the condition will become false (when the last item on the shopping list
has been purchased and crossed off the list). At this poinc, the iteration terminates, and the
first pseudocode statement affer the iteration structure is executed.

Common Programming Error 3.2

Not providing in the body of a while statement an action that eventually causes the con-
dition in the while to become false. Normally, such an iteration structure will never ter-
minate—an error called an “infinite loop.”

3.8 Counter-Controlled Iteration 111

{ 5 Spelling a keyword (such as while or if) with any uppercases letters (as in, While or If)
= is a compilation error. Remember C is case sensitive and keywords contain only lowercase

letters.

a ? Common Programming Error 3.3

As an example of a while statement, consider a program segment designed to find the
first power of 3 larger than 100. The integer variable product has been initialized to 3.
When the following code finishes executing, product will contain the desired answer:

product = 3;

while (product <=) {
product = 3 * product;

}

The flowchart of Fig. 3.4 illustrates the flow of control in the preceding while iteration
statement. Once again, note that (besides small circles and arrows) the flowchart contains
only a rectangle symbol and a diamond symbol. The flowchart clearly shows the iteration.
The flowline emerging from the rectangle wraps back to the decision, which is tested each
time through the loop until the decision eventually becomes false. At this point, the while
statement is exited and control passes to the next statement in the program.

Q:
v

true
product <= 100 — product = 3 * product

falseg>

Fig. 3.4 | Flowcharting the whiTe iteration statement.

When the while statement is entered, the value of product is 3. The variable product
is repeatedly multiplied by 3, taking on the values 9, 27 and 81 successively. When
product becomes 243, the condition in the while statement, product <= 100, becomes
false. This terminates the iteration, and the final value of product is 243. Program execu-
tion continues with the next statement after the whiTle.

3.8 Formulating Algorithms Case Study I: Counter-
Controlled Iteration

To illustrate how algorithms are developed, we solve several variations of a class-averaging
problem. Consider the following problem statement:

A class of ten students took a quiz. The grades (integers in the range 0 to 100) for this
quiz are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students. The
algorithm for solving this problem on a computer must input each of the grades, perform
the averaging calculation, and print the result.

112 Chapter 3 Structured Program Development in C

Let’s use pseudocode to list the actions to execute and specify the order in which these

actions should execute. We use counter-controlled iteration to input the grades one at a
time. This technique uses a variable called a counter to specify the number of times a set
of statements should execute. In this example, iteration terminates when the counter
exceeds 10. In this case study we simply present the pseudocode algorithm (Fig. 3.5) and
the corresponding C program (Fig. 3.6). In the next case study we show how pseudocode
algorithms are developed. Counter-controlled iteration is often called definite iteration
because the number of iterations is known before the loop begins executing,

©C VWO NOSONUDBD WN -

Set total to zero
Set grade counter to one

While grade counter is less than or equal to ten
Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

Fig. 3.5 | Pseudocode algorithm that uses counter-controlled iteration to solve the class-average

problem.
1 // Fig. 3.6: fig03_06.c
2 // Class average program with counter-controlled iteration.
3 #include <stdio.h>
4
5 // function main begins program execution
6 1int main(void)
7 {
8 unsigned int counter; // number of grade to be entered next
9 int grade; // grade value
10 int total; // sum of grades entered by user
11 int average; // average of grades
12
13 // initialization phase
14 total = 0; // initialize total
15 counter = 1; // initialize loop counter
16
17 // processing phase
18 while (counter <= 10) { // loop 10 times
19 printf("%s", "Enter grade: "); // prompt for input
20 scanf("%d", &grade); // read grade from user
21 total = total + grade; // add grade to total
22 counter = counter + 1; // increment counter
23 } // end while
24

Fig. 3.6 | Class-average problem with counter-controlled iteration. (Part | of 2.)

3.8 Counter-Controlled Iteration 113

25 // termination phase

26 average = total / ; // integer division

27

28 printf(, average); // display result

29 } // end function main

Enter grade: 98
Enter grade: 76
Enter grade: 71
Enter grade: 87
Enter grade: 83
Enter grade: 90
Enter grade: 57
Enter grade: 79
Enter grade: 82
Enter grade: 94
Class average is 81

Fig. 3.6 | Class-average problem with counter-controlled iteration. (Part 2 of 2.)

The algorithm mentions a total and a counter. A total is a variable used to accumulate
the sum of a series of values. A counter is a variable (line 8) used to count—in this case, to
count the number of grades entered. Because the counter variable is used to count from 1
to 10 in this program (all positive values), we declared the variable as an unsigned int,
which can store only non-negative values (that is, 0 and higher). Variables used to store
totals should be initialized to zero before being used in a program; otherwise the sum would
include the previous value stored in the total’s memory location. Counter variables are
normally initialized to zero or one, depending on their use (we’ll present examples of
each). An uninitialized variable contains a “garbage” value—the value last stored in the
memory location reserved for that variable.

Common Programming Error 3.4

| Ifa counter or total isn’t initialized, the results of your program will probably be incorrect.
This is an example of a logic error.

< Error-Prevention Tip 3.4
ﬁ Initialize all counters and totals.

The averaging calculation in the program produced an integer result of 81. Actually,
the sum of the grades in this example is 817, which when divided by 10 should yield 81.7,
i.e., a number with a decimal point. We'll see how to deal with such numbers (called
floating-point numbers) in the next section.

Important Note About the Placement of Variable Definitions

In Chapter 2, we mentioned that the C standard allows you to place each variable defini-
tion anywhere in main before that variable’s first use in the code. In this chapter, we con-
tinue to group our variable definitions at the beginning of main to emphasize the
initialization, processing and termination phases of simple programs. Beginning in
Chapter 4, we'll place each variable definition just before that variable’s first use. We'll see

114 Chapter 3 Structured Program Development in C

in Chapter 5—when we discuss the scope of variables—how this practice helps you elimi-
nate errors.

3.9 Formulating Algorithms with Top-Down, Stepwise
Refinement Case Study 2: Sentinel-Controlled Iteration

Let’s generalize the class-average problem. Consider the following problem:

Develop a class-averaging program that will process an arbitrary number of grades

each time the program is run.
In the first class-average example, the number of grades (10) was known in advance. In this
example, no indication is given of how many grades are to be entered. The program must
process an arbitrary number of grades. How can the program determine when to stop the
input of grades? How will it know when to calculate and print the class average?

One way to solve this problem is to use a special value called a sentinel value (also
called a signal value, a dummy value, or a flag value) to indicate “end of data entry.”
The user types grades until all legitimate grades have been entered. The user then types
the sentinel value to indicate “the last grade has been entered.” Sentinel-controlled iter-
ation is often called indefinite iteration because the number of iterations isn’t known
before the loop begins executing.

Clearly, the sentinel value must be chosen so that it cannot be confused with an
acceptable input value. Because grades on a quiz are normally nonnegative integers, —1 is
an acceptable sentinel value for this problem. Thus, a run of the class-average program
might process a stream of inputs such as 95, 96, 75, 74, 89 and —1. The program would
then compute and print the class average for the grades 95, 96, 75, 74, and 89 (-1 is the
sentinel value, so it should 7oz enter into the averaging calculation).

Top-Down, Stepwise Refinement

We approach the class-average program with a technique called top-down, stepwise re-
finement, a technique that’s essential to the development of well-structured programs. We
begin with a pseudocode representation of the top:

Determine the class average for the quiz

The top is a single statement that conveys the program’s overall function. As such, the top
is, in effect, a complete representation of a program. Unfortunately, the top rarely conveys
a sufficient amount of detail for writing the C program. So we now begin the refinement
process. We divide the top into a series of smaller tasks and list these in the order in which
they need to be performed. This results in the following first refinement.

Initialize variables
Input, sum, and count the quiz grades
Calculate and print the class average

Here, only the sequence structure has been used—the steps listed are to be executed in or-
der, one after the other.

» Software Engineering Observation 3.2

Each refinement, as well as the top itself, is a complete specification of the algorithm; only
) the level of detail varies.

3.9 Sentinel-Controlled Iteration 115

Second Refinement

To proceed to the next level of refinement, i.c., the second refinement, we commit to spe-
cific variables. We need a running total of the numbers, a count of how many numbers
have been processed, a variable to receive the value of each grade as it’s input and a variable
to hold the calculated average. The pseudocode statement

Initialize variables

may be refined as follows:

Initialize total to zero
Initialize counter to zero

Only the total and counter need to be initialized; the variables average and grade (for
the calculated average and the user input, respectively) need not be initialized because their
values will be calulated and input from the user, respectively. The pseudocode statement

Input, sum, and count the quiz grades

requires an iteration structure that successively inputs each grade. Because we do not know
in advance how many grades are to be processed, we’ll use sentinel-controlled iteration.
The user will enter legitimate grades one at a time. After the last legitimate grade is typed,
the user will type the sentinel value. The program will test for this value after each grade
is input and will terminate the loop when the sentinel is entered. The refinement of the
preceding pseudocode statement is then

Input the first grade (possibly the sentinel)
While the user has not as yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

Notice that in pseudocode, we do nor use braces around the set of statements that
form the body of the while statement. We simply indent all these statements under the
while to show that they all belong to the while. Again, pseudocode is an informal program-
development aid.

The pseudocode statement

Calculate and print the class average

may be refined as follows:

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

else
Print “No grades were entered”

Notice that we’re being careful here to test for the possibility of division by zero—a fatal
error that if undetected would cause the program to fail (often called “crashing”). The
complete second refinement is shown in Fig. 3.7.

116 Chapter 3 Structured Program Development in C

. Common Programming Error 3.5
| An attempt to divide by zero causes a fatal error.

Good Programming Practice 3.3
: When performing division by an expression whose value could be zero, explicitly test for
NS this case and handle it appropriately in your program (such as by printing an error mes-
sage) rather than allowing the fatal error to occur.

In Fig. 3.5 and Fig. 3.7, we include some completely blank lines in the pseudocode
for readability. Actually, the blank lines separate these programs into their various phases.

I Initialize total to zero
2 Initialize counter to zero
3
4 Input the first grade (possibly the sentinel)
5 While the user has not as yer entered the sentinel
6 Add this grade into the running total
7 Add one to the grade counter
8 Input the next grade (possibly the sentinel)
9
10 [fthe counter is not equal to zero
11 Set the average to the total divided by the counter
12 Print the average
13 else
14 Print “No grades were entered”

Fig. 3.7 | Pseudocode algorithm that uses sentinel-controlled iteration to solve the class-average
problem.

» Software Engineering Observation 3.3

Many programs can be divided logically into three phases: an initialization phase thar
) initializes the program variables; a processing phase that inputs data values and adjusts
program variables accordingly; and a termination phase that calculates and prints the
[final results.

The pseudocode algorithm in Fig. 3.7 solves the more general class-average problem.
This algorithm was developed after only two levels of refinement. Sometimes more levels
are necessary.

» Software Engineering Observation 3.4

You terminate the top-down, stepwise refinement process when the pseudocode algorithm
) is specified in sufficient detail for you to be able to convert the pseudocode ro C.
Implementing the C program is then normally straightforward.

The C program and a sample execution are shown in Fig. 3.8. Although only integer
grades are entered, the averaging calculation is likely to produce a number with a decimal

3.9 Sentinel-Controlled Iteration 117

point. The type int cannot represent such a number. The program introduces the data
type float to handle numbers with decimal points (called floating-point numbers) and
introduces a special operator called a cast operator to handle the averaging calculation.
These features are explained after the program is presented.

1 // Fig. 3.8: fig03_08.c

2 // Class-average program with sentinel-controlled iteration.
3 #include <stdio.h>

4

5 // function main begins program execution

6 int main(void)

7 {

8 unsigned int counter; // number of grades entered

9 int grade; // grade value

10 int total; // sum of grades

11

12 float average; // number with decimal point for average
13

14 // initialization phase

15 total = 0; // initialize total

16 counter = 0; // initialize Toop counter

17

18 // processing phase

19 // get first grade from user
20 printf("%s'", "Enter grade, -1 to end: "); // prompt for input
21 scanf("%d", &grade); // read grade from user
22
23 // loop while sentinel value not yet read from user
24 while (grade != -1) {
25 total = total + grade; // add grade to total
26 counter = counter + 1; // increment counter
27
28 // get next grade from user
29 printf("%s", "Enter grade, -1 to end: "); // prompt for input
30 scanf("%d", &grade); // read next grade
31 } // end while
32
33 // termination phase
34 // if user entered at Teast one grade
35 if (counter != 0) {
36
37 // calculate average of all grades entered
38 average = (float) total / counter; // avoid truncation
39
40 // display average with two digits of precision
41 printf("Class average is %.2f\n", average);
42 } // end if
43 else { // if no grades were entered, output message
44 puts("No grades were entered");
45 } // end else

46 1} // end function main

Fig. 3.8 | Class-average program with sentinel-controlled iteration. (Part | of 2.)

118 Chapter 3 Structured Program Development in C

Enter grade, -1 to end: 75
Enter grade, -1 to end: 94
Enter grade, -1 to end: 97
Enter grade, -1 to end: 88
Enter grade, -1 to end: 70
Enter grade, -1 to end: 64
Enter grade, -1 to end: 83
Enter grade, -1 to end: 89
Enter grade, -1 to end: -1
Class average is 82.50

Enter grade, -1 to end: -1
No grades were entered

Fig. 3.8 | Class-average program with sentinel-controlled iteration. (Part 2 of 2.)

Notice the compound statement in the while loop (line 24) in Fig. 3.8. Once again,
the braces are necessary to ensure that all four statements are executed within the loop.
Without the braces, the last three statements in the body of the loop would fall ousside the
loop, causing the computer to interpret this code incorrectly as follows:

while (grade !=)
total = total + grade; // add grade to total
counter = counter + 1; // increment counter
printf(,); // prompt for input
scanf(, &grade); // read next grade

This would cause an infinite loop if the user did not input -1 for the first grade.

< Error-Prevention Tip 3.5
o In a sentinel-controlled loop, explicitly remind the user what the sentinel value is in
- prompts requesting data entry.
Converting Between Types Explicitly and Implicitly
Averages do not always evaluate to integer values. Often, an average is a value such as 7.2
or —93.5 that contains a fractional part. These values are referred to as floating-point num-
bers and can be represented by the data type float. The variable average is defined to be
of type float (line 12) to capture the fractional result of our calculation. However, the
result of the calculation total / counter is an integer because total and counter are bozh
integer variables. Dividing two integers results in integer division in which any fractional
part of the calculation is truncated (i.c., lost). Because the calculation is performed firsz,
the fractional part is lost before the result is assigned to average. To produce a floating-
point calculation with integer values, we must create temporary values that are floating-
point numbers. C provides the unary cast operator to accomplish this task. Line 38

average = (float) total / counter;

includes the cast operator (float), which creates a remporary floating-point copy of its op-
erand, total. The value stored in total is still an integer. Using a cast operator in this

3.9 Sentinel-Controlled Iteration 119

manner is called explicit conversion. The calculation now consists of a floating-point val-
ue (the temporary float version of total) divided by the unsigned int value stored in
counter. C evaluates arithmetic expressions only in which the data types of the operands
are identical. To ensure that the operands are of the same type, the compiler performs an
operation called implicit conversion on selected operands. For example, in an expression
containing the data types unsigned int and float, copies of unsigned int operands are
made and converted to float. In our example, after a copy of counter is made and con-
verted to float, the calculation is performed and the result of the floating-point division
is assigned to average. C provides a set of rules for conversion of operands of different
types. We discuss this further in Chapter 5.

Cast operators are available for mosr data types—they’re formed by placing paren-
theses around a type name. Each cast operator is a unary operator, i.e., an operator that
takes only one operand. In Chapter 2, we studied the binary arithmetic operators. C also
supports unary versions of the plus (+) and minus (-) operators, so you can write expres-
sions such as -7 or +5. Cast operators associate from right to left and have the same prece-
dence as other unary operators such as unary + and unary -. This precedence is one level
higher than that of the multiplicative operators *, / and %.

Formatting Floating-Point Numbers

Figure 3.8 uses the printf conversion specifier %.2f (line 41) to print the value of aver-
age. The f specifies that a floating-point value will be printed. The .2 is the precision with
which the value will be displayed—with 2 digits to the right of the decimal point. If the
%f conversion specifier is used (without specifying the precision), the default precision of
6 is used—exactly as if the conversion specifier %. 6f had been used. When floating-point
values are printed with precision, the printed value is rounded to the indicated number of
decimal positions. The value in memory is unaltered. When the following statements are
executed, the values 3.45 and 3.4 are printed.

printf(, 3.446); // prints 3.45
printf(, 3.446); // prints 3.4

Using precision in a conversion specification in the format control string of a scanf state-
ment is an error. Precisions are used only in printf conversion specifications.

= 7z, Common Programming Error 3.6
o

- {

Notes on Floating-Point Numbers

Although floating-point numbers are not always “100% precise,” they have numerous ap-
plications. For example, when we speak of a “normal” body temperature of 98.6 Fahren-
heit, we do not need to be precise to a large number of digits. When we view the
temperature on a thermometer and read it as 98.6, it may actually be 98.5999473210643.
The point here is that calling this number simply 98.6 is fine for most applications. We’ll
say more about this issue later.

Another way floating-point numbers develop is through division. When we divide 10
by 3, the resultis 3.3333333. .. with the sequence of 3s repeating infinitely. The computer
allocates only a fixed amount of space to hold such a value, so the stored floating-point
value can be only an approximation.

120 Chapter 3 Structured Program Development in C

Using floating-point numbers in a manner that assumes theyre represented precisely can
lead o incorrect results. Floating-point numbers are represented only approximately by
most computers.

= 7z, Common Programming Error 3.7

< Error-Prevention Tip 3.6
= Do not compare floating-point values for equality.

LY

3.10 Formulating Algorithms with Top-Down, Stepwise
Refinement Case Study 3: Nested Control Statements

Let’s work another complete problem. We'll once again formulate the algorithm using
pseudocode and top-down, stepwise refinement, and write a corresponding C program.
We've seen that control statements may be stacked on top of one another (in sequence) just
as a child stacks building blocks. In this case study we’ll see the only other structured way
control statements may be connected in C, namely through nesting of one control state-
ment within another. Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real-
estate brokers. Last year, 10 of the students who completed this course took the licens-
ing examination. Naturally, the college wants to know how well its students did on the
exam. Youve been asked to write a program to summarize the results. Youve been
given a list of these 10 students. Next to each name a 1 is written if the student passed
the exam or a 2 if the student failed.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the prompting message “Enter
result” each time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results indicating the number of students who
passed and the number who failed.

4. Ifmore than eight students passed the exam, print the message “Bonus to instructor!”
After reading the problem statement carefully, we make the following observations:
1. The program must process 10 test results. A counter-controlled loop will be used.

2. Each test result is a number—either a 1 or a 2. Each time the program reads a test
result, the program must determine whether the number is a 1 or a 2. We test for
a1 in our algorithm. If the number is not a 1, we assume that it’s a 2. (Exercise 3.27
asks you to ensure that every test resultisa 1 ora 2.)

3. Two counters are used—one to count the number of students who passed the
exam and one to count the number of students who failed the exam.

4. After the program has processed all the results, it must decide whether more than
8 students passed the exam.

Let’s proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Analyze exam results and decide whether instructor should receive a bonus

3.10 Nested Control Statements 121

Once again, it’s important to emphasize that the top is a complere representation of the
program, but several refinements are likely to be needed before the pseudocode can be nat-
urally evolved into a C program. Our first refinement is

Initialize variables
Input the ten quiz grades and count passes and failures
Print a summary of the exam results and decide whether instructor should receive a bonus

Here, too, even though we have a complete representation of the entire program, further
refinement is necessary. We now commit to specific variables. Counters are needed to re-
cord the passes and failures, a counter will be used to control the looping process, and a
variable is needed to store the user input. The pseudocode statement

Initialize variables
may be refined as follows:

Initialize passes to zero
Initialize failures ro zero
Initialize student to one

Notice that only the counter and totals are initialized. The pseudocode statement
Input the ten quiz grades and count passes and failures

requires a loop that successively inputs the result of each exam. Here it’s known iz advance
that there are precisely ten exam results, so counter-controlled looping is appropriate. In-
side the loop (i.e., nested within the loop) a double-selection statement will determine
whether each exam result is a pass or a failure and will increment the appropriate counters
accordingly. The refinement of the preceding pseudocode statement is then

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one ro passes

else

Add one ro failures

Add one to student counter

Notice the use of blank lines to set off the If..else to improve program readability.
The pseudocode statement

Print a summary of the exam results and decide whether instructor should receive a
bonus

may be refined as follows:

Print the number of passes

Print the number of failures

If more than eight students passed
Print “Bonus to instructor!”

122 Chapter 3 Structured Program Development in C

The complete second refinement appears in Fig. 3.9. We use blank lines to set off the
while statement for program readability.

This pseudocode is now sufficiently refined for conversion to C. The C program and
two sample executions are shown in Fig. 3.10. We've taken advantage of a feature of C
that allows initialization to be incorporated into definitions (lines 9—11). Such initializa-
tion occurs at compile time. Also, notice that when you output an unsigned int you use
the %u conversion specifier (lines 33—-34).

| Initialize passes to zero
2 Initialize failures to zero
3 Initialize student to one
4
5 While student counter is less than or equal to ten
6 Input the next exam result
7
8 If the student passed
9 Add one to passes
10 else
11 Add one to failures
12
13 Add one to student counter
14

15 Print the number of passes

16 Print the number of failures

17 Ifmore than eight students passed
18 Print “Bonus to instructor!”

Fig. 3.9 | Pseudocode for examination-results problem.

~= Software Engineering Observation 3.5

@ LExperience has shown that the most difficult part of solving a problem on a computer is
developing the algorithm for the solution. Once a correct algorithm has been specified, the
process of producing a working C program is normally straightforward.

Software Engineering Observation 3.6

Many programmers write programs without ever using program-development tools such
) as pseudocode. They feel that their ultimate goal is to solve the problem on a computer and
that writing pseudocode merely delays the production of final outputs.

1 // Fig. 3.10: fig03_10.c

2 // Analysis of examination results.
3 #include <stdio.h>
4

Fig. 3.10 | Analysis of examination results. (Part | of 3.)

3.10 Nested Control Statements

123

5 // function main begins program execution

6 1int main(void)

7 {

8 // initialize variables in definitions

9 unsigned int passes = 0; // number of passes

10 unsigned int failures = 0; // number of failures

11 unsigned int student = 1; // student counter

12 int result; // one exam result

13

14 // process 10 students using counter-controlled Toop
15 while (student <= 10) {

16

17 // prompt user for input and obtain value from user
18 printf("%s", "Enter result (l=pass,2=fail): ");
19 scanf("%d", &result);

20

21 // if result 1, increment passes

22 if (result == 1) {

23 passes = passes + 1;

24 } // end if

25 else { // otherwise, increment failures

26 failures = failures + 1;

27 } // end else

28

29 student = student + 1; // increment student counter
30 } // end while

31

32 // termination phase; display number of passes and failures
33 printf("Passed %u\n", passes);

34 printf("Failed %u\n", failures);

35

36 // if more than eight students passed, print "Bonus to instructor!"
37 if (passes > 8) {

38 puts("Bonus to dnstructor!");

39 } // end if
40 } // end function main

Enter Result (1=pass,2=fail): 1

Enter Result (1=pass,2=fail): 2

Enter Result (1=pass,2=fail): 2

Enter Result (1=pass,2=fail): 1

Enter Result (1=pass,2=fail): 1

Enter Result (l=pass,2=fail): 1

Enter Result (l=pass,2=fail): 2

Enter Result (1=pass,2=fail): 1

Enter Result (1=pass,2=fail): 1

Enter Result (1=pass,2=fail): 2

Passed 6

Failed 4

Fig. 3.10 | Analysis of examination results. (Part 2 of 3.)

124 Chapter 3 Structured Program Development in C

Enter Result (1=pass,2=fail):
Enter Result (1=pass,2=fail):
Enter Result (1=pass,2=fail):
Enter Result (1l=pass,2=fail):
Enter Result (1=pass,2=fail):
Enter Result (1=pass,2=fail):
Enter Result (1=pass,2=fail):
Enter Result (1=pass,2=fail):
Enter Result (1=pass,2=fail):
Enter Result (1l=pass,2=fail):
Passed 9

Failed 1

Bonus to instructor!

RERRERERRNRR R

Fig. 3.10 | Analysis of examination results. (Part 3 of 3.)

3.11 Assignment Operators

C provides several assignment operators for abbreviating assignment expressions. For ex-
ample, the statement

C=2cC + 3;
can be abbreviated with the addition assignment operator += as
C += 3;

The += operator adds the value of the expression on the right of the operator to the value
of the variable on the /eff of the operator and stores the result in the variable on the /eff of
the operator. Any statement of the form

variable = variable operator expression;

where operator is one of the binary operators +, -, *, / or % (or others we’ll discuss in
Chapter 10), can be written in the form

variable operator= " expression;

Thus the assignment ¢ += 3 adds 3 to c. Figure 3.11 shows the arithmetic assignment
operators, sample expressions using these operators and explanations.

Assignment operator Sample expression Explanation

Assume: int ¢ = 3, d =5, e=4, f=6, g=12;

+= C += 7 c=c¢C+ 7 10 to c
= d -= 4 d=d -4 ltod
s e ¥*= 5 =e *5 20to e
/= f /=3 =f/3 2to f
%= g %= 9 g=9%9 3tog

Fig. 3.11 | Arithmetic assignment operators.

3.12 Increment and Decrement Operators 125

3.12 Increment and Decrement Operators

C also provides the unary increment operator, ++, and the unary decrement operator, --,
which are summarized in Fig. 3.12. If a variable c is to be incremented by 1, the increment
operator ++ can be used rather than the expressions ¢ = ¢ + L or ¢ += 1. If increment or dec-
rement operators are placed before a variable (i.c., prefixed), they’re referred to as the prein-
crement or predecrement operators, respectively. If increment or decrement operators are
placed affer a variable (i.e., postfixed), they’re referred to as the postincrement or postdec-
rement operators, respectively. Preincrementing (predecrementing) a variable causes the
variable to be incremented (decremented) by 1, #hen its new value is used in the expression
in which it appears. Postincrementing (postdecrementing) the variable causes the current
value of the variable to be used in the expression in which it appears, #hen the variable value
is incremented (decremented) by 1.

Operator Sample expression Explanation

4 ++a Increment a by 1, then use the new value of
a in the expression in which a resides.

++ at+ Use the current value of a in the expression
in which a resides, then increment a by 1.

—= --b Decrement b by 1, then use the new value
of b in the expression in which b resides.

-- b-- Use the current value of b in the expression
in which b resides, then decrement b by 1.

Fig. 3.12 | Increment and decrement operators

Figure 3.13 demonstrates the difference between the preincrementing and the postin-
crementing versions of the ++ operator. Postincrementing the variable c causes it to be
incremented affer it’s used in the printf statement. Preincrementing the variable c causes
it to be incremented before it’s used in the printf statement.

1 // Fig. 3.13: fig03_13.c

2 // Preincrementing and postincrementing.
3 #include <stdio.h>

4

5 // function main begins program execution
6 1int main(void)

7 {

8 int c; // define variable

9

10 // demonstrate postincrement

11 c=25; // assign 5 to c

12 printf("%d\n", c); // print 5

13 printf("%d\n", c++); // print 5 then postincrement
14 printf("%d\n\n", c); // print 6

Fig. 3.13 | Preincrementing and postincrementing. (Part | of 2.)

126 Chapter 3 Structured Program Development in C

15

16 // demonstrate preincrement

17 c=5; // assign 5 to c

18 printf(, €); // print 5

19 printf(, ++C); // preincrement then print 6
20 printf(, C); // print 6

21 } // end function main

[e) o)V,]

Fig. 3.13 | Preincrementing and postincrementing. (Part 2 of 2.)

The program displays the value of c before and after the ++ operator is used. The dec-
rement operator (--) works similarly.

> Good Programming Practice 3.4
y Unary operators should be placed directly next to their operands with no intervening spac-
AR e,

The three assignment statements in Fig. 3.10

passes = passes + 1;
failures = failures + 1;
student = student + 1;

can be written more concisely with assignment operators as

passes += 1;
failures += 1;
student += 1;

with preincrement operators as

++passes;
++failures;
++student;

or with postincrement operators as

passes++;
failures++;
student++;

It’s important to note here that when incrementing or decrementing a variable in a
statement by izself, the preincrement and postincrement forms have the same effect. It’s
only when a variable appears in the context of a larger expression that preincrementing and
postincrementing have different eftects (and similarly for predecrementing and post-
decrementing). Of the expressions we’ve studied thus far, only a simple variable name may
be used as the operand of an increment or decrement operator.

3.13 Secure C Programming 127

7 Common Programming Error 3.8
B Astempting to use the increment or decrement operator on an expression other than a sim-
ple variable name is a syntax error, e.g., writing ++(x + 1).

Error-Prevention Tip 3.7

C generally does not specify the order in which an operator’s operands will be evaluated
(although we'll see exceptions to this for a few operators in Chapter 4). Therefore you
should use increment or decrement operators only in statements in which one variable is
incremented or decremented by itself.

Figure 3.14 lists the precedence and associativity of the operators introduced to this
point. The operators are shown top to bottom in decreasing order of precedence. The
second column indicates the associativity of the operators at each level of precedence.
Notice that the conditional operator (?:), the unary operators increment (++), decrement
(--), plus (+), minus (-) and casts, and the assignment operators =, +=, -=, *=, /= and %=
associate from right to left. The third column names the various groups of operators. All
other operators in Fig. 3.14 associate from left to right.

Operators Associativity Type

++ (postfix) -~ (postfix) right to left postfix

+ - (gpe) ++ (prefix) -- (prefix) right to left unary
/% left to right multiplicative
+ - left to right additive

< <= > >= left to right relational

== |- left to right equality

7 right to left conditional

= 4= = = /= %= right to left assignment

Fig. 3.14 | Precedence and associativity of the operators encountered so far in the text.

3.13 Secure C Programming

Arithmetic Overflow
Figure 2.5 presented an addition program which calculated the sum of two int values (line
18) with the statement

sum = integerl + integer2; // assign total to sum

Even this simple statement has a potential problem—adding the integers could result in a
value that’s 00 large to store in an int variable. This is known as arithmetic overflow and
can cause undefined behavior, possibly leaving a system open to attack.

The platform-specific maximum and minimum values that can be stored in an int
variable are represented by the constants INT_MAX and INT_MIN, respectively, which are
defined in the header <Timits.h>. There are similar constants for the other integral types
that we'll be introducing in Chapter 4. You can see your platform’s values for these con-
stants by opening the header <1imits.h> in a text editor.

128 Chapter 3 Structured Program Development in C

I¢’s considered a good practice to ensure that before you perform arithmetic calculations
like the one in line 18 of Fig. 2.5, they will no# overflow. The code for doing this is shown
on the CERT website waw. securecoding. cert.org—just search for guideline “INT32-C.”
The code uses the & (logical AND) and || (logical OR) operators, which we discuss in
Chapter 4. In industrial-strength code, you should perform checks like these for @// calcula-
tions. Later chapters show other programming techniques for handling such errors.

Unsigned Integers

In Fig. 3.6, line 8 declared as an unsigned int the variable counter because it’s used to
count only non-negative values. In general, counters that should store only non-negative
values should be declared with unsigned before the integer type. Variables of unsigned
types can represent values from 0 to approximately twice the positive range of the corre-
sponding signed integer types. You can determine your platform’s maximum unsigned
int value with the constant UINT_MAX from <Timits.h>.

The class-averaging program in Fig. 3.6 could have declared as unsigned int the vari-
ables grade, total and average. Grades are normally values from 0 to 100, so the total
and average should each be greater than or equal to 0. We declared those variables as ints
because we can’t control what the user actually enters—the user could enter negative
values. Worse yet, the user could enter a value that’s not even a number. (We’'ll show how
to deal with such inputs later in the book.)

Sometimes sentinel-controlled loops use invalid values to terminate a loop. For
example, the class-averaging program of Fig. 3.8 terminates the loop when the user enters
the sentinel -1 (an invalid grade), so it would be improper to declare variable grade as an
unsigned int. As you'll see, the end-of-file (EOF) indicator—which is introduced in the
next chapter and is often used to terminate sentinel-controlled loops—is also a negative
number. For more information, see Chapter 5, “Integer Security,” of Robert Seacord’s

book Secure Coding in C and C++, 2e.

scanf_s and printf_s

The C11 standard’s Annex K introduces more secure versions of printf and scanf called
printf_s and scanf_s—we discuss these functions and the corresponding security issues
Sections 6.13 and 7.13. Annex K is designated as optional, so not every C vendor will im-
plement it. Microsoft implemented its own versions of printf_s and scanf_s prior to the
publication of the C11 standard, and its compiler immediately began issuing warnings for
every scanf call. The warnings say that scanf is deprecated—it should no longer be used—
and that you should consider using scanf_s instead.

Many organizations have coding standards that require code to compile without
warning messages. There are two ways to eliminate Visual C++’s scanf warnings—you can
use scanf_s instead of scanf or you can disable these warnings. For the input statements
we’ve used so far, Visual C++ users can simply replace scanf with scanf_s. You can dis-
able the warning messages in Visual C++ as follows:

1. Type Alr F7 to display the Property Pages dialog for your project.
2. In the left column, expand Configuration Properties > C/C++ and select Preprocessor.
3. In the right column, at the end of the value for Preprocessor Definitions, insert

; _CRT_SECURE_NO_WARNINGS

3.13 Secure C Programming 129

4. Click OK to save the changes.

You'll no longer receive warnings on scanf (or any other functions that Microsoft has dep-
recated for similar reasons). For industrial-strength coding, disabling the warnings is dis-
couraged. We'll say more about how to use scanf_s and printf_s in a later Secure C
Coding Guidelines section.

Summary

Section 3.1 Introduction
* Before writing a program to solve a particular problem, you must have a thorough understanding
of the problem and a carefully planned approach to solving the problem.

Section 3.2 Algorithms
* The solution to any computing problem involves executing a series of actions in a specific order

(p. 102).

* A procedure (p. 102) for solving a problem in terms of the actions (p. 102) to be executed, and the
order in which these actions are to be executed, is called an algorithm (p. 102).

* The order in which actions are to be executed is important.

Section 3.3 Pseudocode

* Pseudocode (p. 102) is an artificial and informal language that helps you develop algorithms.
* Pseudocode is similar to everyday English; it’s not an actual computer programming language.
* Pseudocode programs help you “think out” a program.
* Pseudocode consists purely of characters; you may type pseudocode using a text editor.
* Carefully prepared pseudocode programs may be converted easily to corresponding C programs.

* Pseudocode consists only of action statements.

Section 3.4 Control Structures
* Normally, statements in a program execute one after the other in the order in which they’re writ-
ten. This is called sequential execution (p. 103).

* Various C statements enable you to specify that the next statement to execute may be other than
the next one in sequence. This is called transfer of control (p. 103).

* Structured programming has become almost synonymous with “goto elimination” (p. 103).

* Structured programs are clearer, easier to debug and modify and more likely to be bug free.

* All programs can be written in terms of sequence, selection and iteration control structures (p. 103).
* Unless directed otherwise, the computer automatically executes C statements in sequence.

* A flowchart (p. 104) is a graphical representation of an algorithm. Flowcharts are drawn using
rectangles, diamonds, rounded rectangles and small circles, connected by arrows called flow-
lines (p. 104).

* The rectangle (action) symbol (p. 104) indicates any type of action including a calculation or an
input/output operation.

* Flowlines indicate the order in which the actions are performed.

* When drawing a flowchart that represents a complete algorithm, we use as the first symbol a
rounded rectangle containing the word “Begin.” We use as the last symbol a rounded rectangle

130 Chapter 3 Structured Program Development in C

containing the word “End.” When drawing only a portion of an algorithm, we omit the rounded
rectangle symbols in favor of using small circle symbols, also called connector symbols (p. 104).

The diamond (decision) symbol (p. 104) indicates that a decision is to be made.
The if single-selection statement selects or ignores a single action.
The if...else double-selection statement (p. 104) selects between two different actions.

The switch multiple-selection statement (p. 104) selects among many different actions based on
the value of an expression.

C provides three types of iteration statements (also called repetition statements), namely whiTe,
do...while and for.

Control-statement flowchart segments can be attached to one another with control-statement
stacking (p. 105)—connecting the exit point of one control statement to the entry point of the next.

There’s only one other way control statements may be connected—control-statement nesting.

Section 3.5 The ifF Selection Statement

Selection structures are used to choose among alternative courses of action.

The decision symbol contains an expression, such as a condition, that can be either true or false.
The decision symbol has two flowlines emerging from it. One indicates the direction to be taken
when the expression is true; the other indicates the direction when the expression is false.

A decision can be based on any expression—if the expression evaluates to zero, it’s treated as false,
and if it evaluates to nonzero, it’s treated as true.

The if statement is a single-entry/single-exit structure (p. 105).

Section 3.6 The if...else Selection Statement

C provides the conditional operator (?:, p. 107) which is closely related to the 1 f...eTse statement.

The conditional operator is C’s only ternary operator—it takes three operands. The first operand
is a condition. The second operand is the value for the conditional expression (p. 107) if the con-
dition is true, and the third operand is the value for the conditional expression if the condition is false.

Nested if...else statements (p. 108) test for multiple cases by placing 1f...el1se statements in-
side if...else statements.

The if selection statement expects only one statement in its body. To include several statements
in the body of an i f, you must enclose the set of statements in braces ({ and 3).

A set of statements contained within a pair of braces is called a compound statement or a block

(p- 109).

A syntax error is caught by the compiler. A logic error has its effect at execution time. A fatal
logic error causes a program to fail and terminate prematurely. A nonfatal logic error allows a
program to continue executing but to produce incorrect results.

Section 3.7 The while Iteration Statement

The while iteration statement (p. 110) specifies that an action is to be repeated while a condition
is true. Eventually, the condition will become false. At this point, the iteration terminates, and
the first statement after the iteration statement executes.

Section 3.8 Formulating Algorithms Case Study 1: Counter-Controlled Iteration

Counter-controlled iteration (p. 112) uses a variable called a counter (p. 112) to specify the num-
ber of times a set of statements should execute.

Counter-controlled iteration is often called definite iteration (p. 112) because the number of it-
erations is known before the loop begins executing.

Summary 131

¢ A total is a variable used to accumulate the sum of a series of values. Variables used to store totals

should normally be initialized to zero before being used in a program; otherwise the sum would
include the previous value stored in the total’s memory location.

* A counter is a variable used to count. Counter variables are normally initialized to zero or one,
depending on their use.

* An uninitialized variable contains a “garbage” value (p. 113)—the value last stored in the mem-
ory location reserved for that variable.

Section 3.9 Formulating Algorithms with Top-Down, Stepwise Refinement Case
Study 2: Sentinel-Controlled Iteration

* A sentinel value (p. 114; also called a signal value, a dummy value, or a flag value) is used in a
sentinel-controlled loop to indicate the “end of data entry.”

Sentinel-controlled iteration is often called indefinite iteration (p. 114) because the number of
iterations is not known before the loop begins executing.

The sentinel value must be chosen so that it cannot be confused with an acceptable input value.

In top-down, stepwise refinement (p. 114), the top is a statement that conveys the program’s
overall function. It’s a complete representation of a program. In the refinement process, we di-
vide the top into smaller tasks and list these in execution order.

The type float (p. 117) represents numbers with decimal points (called floating-point numbers).
When two integers are divided, any fractional part of the result is truncated (p. 118).

To produce a floating-point calculation with integer values, you must cast the integers to float-
ing-point numbers. C provides the unary cast operator (float) to accomplish this task.

Cast operators (p. 118) perform explicit conversions.

Most computers can evaluate arithmetic expressions only in which the operands’ data types are
identical. To ensure this, the compiler performs an operation called implicit conversion (p. 119)
on selected operands.

A cast operator is formed by placing parentheses around a type name. The cast operator is a unary
operator—it takes only one operand.

Cast operators associate from right to left and have the same precedence as other unary opera-
tors such as unary + and unary -. This precedence is one level higher than that of *, / and %.

The printf conversion specifier %. 2f specifies that a floating-point value will be displayed with
two digits to the right of the decimal point. If the %f conversion specifier is used (without spec-
ifying the precision), the default precision (p. 119) of 6 is used.

When floating-point values are printed with precision, the printed value is rounded (p. 119) to
the indicated number of decimal positions for display purposes.

Section 3.11 Assignment Operators

* C provides several assignment operators for abbreviating assignment expressions (p. 124).

* The += operator adds the value of the expression on the right of the operator to the value of the
variable on the left of the operator and stores the result in the variable on the left of the operator.

¢ Any statement of the form

variable = variable operator expression;

where operator is one of the binary operators +, -, *, / or % (or others we’ll discuss in Chapter 10),
can be written in the form

variable operator= expression;

132 Chapter 3 Structured Program Development in C

Section 3.12 Increment and Decrement Operators

C provides the unary increment operator, ++ (p. 125), and the unary decrement operator, --
(p. 125), for use with integral types.

If increment or decrement operators are placed before a variable, they’re referred to as the preincre-
ment or predecrement operators, respectively. If increment or decrement operators are placed after
a variable, they’re referred to as the postincrement or postdecrement operators, respectively.

Preincrementing (predecrementing) a variable causes it to be incremented (decremented) by 1,
then the new value of the variable is used in the expression in which it appears.

Postincrementing (postdecrementing) a variable uses the current value of the variable in the ex-
pression in which it appears, then the variable value is incremented (decremented) by 1.

When incrementing or decrementing a variable in a statement by itself, the preincrement and
postincrement forms have the same effect. When a variable appears in the context of a larger ex-
pression, preincrementing and postincrementing have different effects (and similarly for predec-
rementing and postdecrementing).

Section 3.13 Secure C Programming

Adding integers can result in a value that’s too large to store in an int variable. This is known as
arithmetic overflow and can cause unpredictable runtime behavior, possibly leaving a system
open to attack.

The maximum and minimum values that can be stored in an int variable are represented by the
constants INT_MAX and INT_MIN, respectively, from the header <1imits.h>.

It’s considered a good practice to ensure that arithmetic calculations will not overflow before you
perform the calculation. In industrial-strength code, you should perform checks for all calcula-
tions that can result in overflow or underflow (p. 127).

In general, any integer variable that should store only non-negative values should be declared
with unsigned before the integer type. Variables of unsigned types can represent values from 0
to approximately double the positive range of the corresponding signed integer type.

You can determine your platform’s maximum unsigned int value with the constant UINT_MAX
from <limits.h>.

The C11 standard’s Annex K introduces more secure versions of printf and scanf called
printf_s and scanf_s. Annex K is designated as optional, so not every C compiler vendor will
implement it.

Microsoft implemented its own versions of printf_s and scanf_s prior to the C11 standard’s pub-
lication and immediately began issuing warnings for every scanf call. The warnings say that scanf
is deprecated—it should no longer be used—and that you should consider using scanf_s instead.
Many organizations have coding standards that require code to compile without warning mes-

sages. There are two ways to eliminate Visual C++’s scanf warnings. You can either start using
scanf_s immediately or disable this warning message.

Self-Review Exercises

3.1 Fill in the blanks in each of the following questions.

a) A procedure for solving a problem in terms of the actions to be executed and the order
in which the actions should be executed is called a(n)
b) Specifying the execution order of statements by the computer is called
¢) All programs can be written in terms of three types of control statements: ,
and

3.2
3.3

3.4

3.5

Self-Review Exercises 133

d) The selection statement is used to execute one action when a condition is true
and another action when that condition is false.

e) Several statements grouped together in braces ({ and }) are called a(n)

f) The iteration statement specifies that a statement or group of statements is to
be executed repeatedly while some condition remains true.

g) Iteration of a set of instructions a specific number of times is called iteration.

h) When it’s not known in advance how many times a set of statements will be repeated,
a(n) value can be used to terminate the iteration.

Write four different C statements that each add 1 to integer variable x.

Write a single C statement to accomplish each of the following:

a) Multiply the variable product by 2 using the *= operator.

b) Multiply the variable product by 2 using the = and * operators.

c) Test whether the value of the variable count is greater than 10. If it is, print “Count is
greater than 10.”

d) Calculate the remainder after q is divided by divisor and assign the result to q. Write
this statement two different ways.

¢) Print the value 123.4567 with two digits of precision. What value is printed?

f) Print the floating-point value 3.14159 with three digits to the right of the decimal point.
What value is printed?

Werite a C statement to accomplish each of the following tasks.

a) Define variables sum and x to be of type int.

b) Set variable x to 1.

c) Set variable sum to 0.

d) Add variable x to variable sum and assign the result to variable sum.
e) Print "The sum is: " followed by the value of variable sum.

Combine the statements that you wrote in Exercise 3.4 into a program that calculates the

sum of the integers from 1 to 10. Use the while statement to loop through the calculation and in-
crement statements. The loop should terminate when the value of x becomes 11.

3.6

3.7

Write single C statements that

a) Input unsigned integer variable x with scanf. Use the conversion specifier %u.

b) Input unsigned integer variable y with scanf. Use the conversion specifier %u.

¢) Set unsigned integer variable i to 1.

d) Set unsigned integer variable power to 1.

e) Multiply unsigned integer variable power by x and assign the result to power.

f) Increment variable 1 by 1.

g) Test1 to see if it’s less than or equal to y in the condition of a while statement.

h) Output unsigned integer variable power with printf. Use the conversion specifier %u.

Werite a C program that uses the statements in Exercise 3.6 to calculate x raised to the y

power. The program should have a while iteration control statement.

3.8

Identify and correct the errors in each of the following:
a) while (c <=5) {

product *= c;
++C;
b) scanf(, &value);
c) if (gender == 1)
puts()5
else;

puts(N

134 Chapter 3 Structured Program Development in C

3.9 What’s wrong with the following whiTe iteration statement (assume z has value 100), which
is supposed to calculate the sum of the integers from 100 down to 1?

while (z >= 0)
sum += z;

Answers to Self-Review Exercises

3.1 a) Algorithm. b) Program control. ¢) Sequence, selection, iteration. d) if...else. ¢) Com-
pound statement or block. f) while. g) Counter-controlled or definite. h) Sentinel.

3.2 X =X + 1;
X += 1;
++X;

X++;

3.3 a) product *= 2;
b) product = product * 2;
c) if (count > 10)
puts("Count is greater than 10.");

d) q %= divisor;

g =9 % divisor;
e) printf("%.2f", 123.4567);

123.46 is displayed.
f) printf("%.3f\n", 3.14159);

3.142 is displayed.

3.4 a) int sum, x;
b) x = 1;
c) sum = 0;
d) sum += x; orsum = sum + x;
e) printf("The sum is: %d\n", sum);

3.5 See below.

| // Calculate the sum of the integers from 1 to 10

2 #include <stdio.h>

3

4 1int main(void)

5 {

6 unsigned int x = 1; // set x

7 unsigned int sum = 0; // set sum

8

9 while (x <= 10) { // loop while x is less than or equal to 10
10 sum += x; // add x to sum

11 ++X; // increment x

12 } // end while

13

14 printf("The sum is: %u\n", sum); // display sum

15 } // end main function

3.6 a) scanf("%u", &);
b) scanf("%u", &y);
o 1i=1;
d) power = 1;
e) power *= X;

f) ++i;

Exercises 135

g) while (i <=y)
h) printf("%d", power);

3.7 See below.

// raise x to the y power

1

2 #include <stdio.h>

3

4 int main(void)

5 {

6 printf("%s", "Enter first integer: ");

7 unsigned 1int x;

8 scanf("%u", &); // read value for x from user
9 printf("%s", "Enter second integer: ");

10 unsigned int y;

11 scanf("%u", &y); // read value for y from user
12

13 unsigned int i = 1;

14 unsigned int power = 1; // set power

15

16 while (i <=y) { // loop while i is less than or equal to y
17 power *= x; // multiply power by x

18 ++i; // increment i

19 } // end while
20
21 printf("%u\n", power); // display power

22 } // end main function

3.8 a) Error: Missing the closing right brace of the while body.
Correction: Add closing right brace after the statement ++c;.
b) Error: Precision used in a scanf conversion specification.
Correction: Remove .4 from the conversion specification.
¢) Error: Semicolon after the else part of the if...e1se statement results in a logic error.
The second puts will always be executed.
Correction: Remove the semicolon after else.

3.9 The value of the variable z is never changed in the while statement. Therefore, an infinite
loop is created. To prevent the infinite loop, z must be decremented so that it eventually becomes 0.

Exercises

3.10 Identify and correct the errors in each of the following. [/Noze: There may be more than one
error in each piece of code.]
a) if (sales => 5000)
puts("Sales are greater than or equal to $5000")
else

puts("Sales are less than $5000)
b) 1int x = 1, product = 0;

while (x <= 10); {
product *= x;
++X;
}
c) While (x <= 100)
total =+ Xx;
++X;

136

3.11

3.12

Chapter 3 Structured Program Development in C

d) while (y<10){
printf(, Y)
}

Fill in the blanks in each of the following:

a) In , statements execute one after the other in the order they are written.

b) programs help you “think out” a program.

¢) All programs can be written in terms of , , control structures.

d) Flowcharts are drawn using 5 5 and connected by arrows
called flowlines.

e) Flowlines indicate the in which the actions are performed.

f) The multiple-selection statement selects one among many options based on the

value of an expression.
g) The operator is C’s only ternary operator. It takes three operands, a
condition, the value for the conditional expression if the condition is true, and
the value for the conditional expression if the condition is false.
h) The if statement is a structure.

What does the following program print?

{

#include <stdio.h>

int main(void)

int y;
int x = 1;
int total = 0;

while (x <=) {
y =X ¥ x ¥ x;
printf(, Y)
total += y;
++X;

} // end while

printf(, total);

17 } // end main

3.13

3.14

Write a single pseudocode statement that indicates each of the following:

a) Display the message "Enter your name:"

b) Assign the product of variables a, b, ¢ and d to variable p.

¢) The following condition is to be tested in a conditional statement: if x is greater than y,
then x is assigned the value 10, otherwise x is assigned the value 20.

d) Obtain values for variables a, b, c and d from the keyboard.

Formulate a pseudocode algorithm for each of the following:

a) Obtain three numbers from the keyboard, compute their product and display the result.

b) Obtain two numbers from the keyboard, and determine and display which (if either) is
the smaller of the two numbers.

¢) Obrain a series of positive numbers from the keyboard, and determine and display their
average. Assume that the user types the sentinel value -1 to indicate “end of data entry.”

Exercises 137

3.15 State which of the following are #7ue and which are false. If a statement is false, explain why.

a) Analgorithm is a procedure for solving a problem in terms of the actions to be executed,
without specifying the order of the actions.

b) Unless directed otherwise, the computer automatically executes C statements in sequence.

c) Theif...else double-selection statement selects a single action.

d) A logic error affects the program when the program is compiled. It does not fail or ter-
minate the program prematurely.

¢) You can determine your platform’s maximum unsigned int value with the constant
UINT_MAX from <limits.h>.

For Exercises 3.16-3.20, perform each of these steps:
I. Read the problem statement.
Formulate the algorithm using pseudocode and top-down, stepwise refinement.

Write a C program.

SRS

Test, debug and execute the C program.

3.16 (Sales Tax) Sales tax is collected from buyers and remitted to the government. A retailer
has to file a monthly sales tax report which lists the sales for the month and the amount of sales
tax collected, at both the county and state levels. Develop a program that will input the total col-
lections for a month, calculate the sales tax on the collections, and display the county and state
taxes. Assume that states have a 4% sales tax and counties have a 5% sales tax. Here is a sample
input/output dialog.

Enter total amount collected (-1 to quit): 45678
Enter name of month: January

Total Collections: $ 45678.00

Sales: $ 41906.42

County Sales Tax: $ 2095.32

State Sales Tax: $ 1676.26

Total Sales Tax Collected: $ 3771.58

Enter total amount collected (-1 to quit): 98000
Enter name of month: February

Total Collection: $ 98000

Sales: $ 89908.26

County Sales Tax: $ 4495.41

State Sales Tax: $ 3596.33

Total Sales Tax Collected: $ 8091.74

Enter total amount collected (-1 to quit): -1

3.17 (Mortgage Calculator) Develop a C program to calculate the interest accrued on a bank cus-
tomer's mortgage. For each customer, the following facts are available:

a) the account number

b) the mortgage amount

¢) the mortgage term

d) the interest rate

The program should input each fact, calculate the total interest payable (= mortgage amount

x interest rate x mortgage term), and add it to the mortgage amount to get the total amount payable.
It should calculate the required monthly payment by dividing the total amount payable by the
number of months in the mortgage term. The program should display the required monthly pay-
ment rounded off to the nearest dollar. The program should process each customer's account at a
time. Here is a sample input/ output dialog:

138 Chapter 3 Structured Program Development in C

Enter account number (-1 to end): 100
Enter mortgage amount (in dollars): 6500
Enter mortgage term (in years): 3

Enter interest rate (as a decimal): 0.075
The monthly payable interest $ 221

Enter account number (-1 to end): 200
Enter mortgage amount (in dollars): 12000
Enter mortgage term (in years): 10

Enter interest rate (as a decimal): 0.045
The monthly payable interest is: $ 145
Enter account number (-1 to end): -1

3.18 (Sales-Commission Calculator) One large chemical company pays its salespeople on a com-
mission basis. The salespeople receive $200 per week plus 9% of their gross sales for that week. For
example, a salesperson who sells $5000 worth of chemicals in a week receives $200 plus 9% of
$5000, or a total of $650. Develop a program that will input each salesperson’s gross sales for last
week and will calculate and display that salesperson’s earnings. Process one salesperson's figures at a
time. Here is a sample input/output dialog:

Enter sales in dollars (-1 to end): 5000.00
Salary is: $650.00

Enter sales in dollars (-1 to end): 1234.56
Salary is: $311.11

Enter sales in dollars (-1 to end): -1

3.19 (Interest Calcularor) The simple interest on a loan is calculated by the formula

interest = principal * rate * days / ;

The preceding formula assumes that rate is the annual interest rate, and therefore includes the
division by 365 (days). Develop a program that will input principal, rate and days for several
loans, and will calculate and display the simple interest for each loan, using the preceding formula.
Here is a sample input/output dialog:

Enter loan principal (-1 to end): 1000.00
Enter interest rate: .1

Enter term of the loan in days: 365

The interest charge is $100.00

Enter loan principal (-1 to end): 1000.00
Enter interest rate: .08375

Enter term of the loan in days: 224

The interest charge is $51.40

Enter loan principal (-1 to end): -1

Exercises 139

3.20 (Salary Calculator) Develop a program that will determine the gross pay for each of several
employees. The company pays “straight time” for the first 40 hours worked by each employee and
pays “time-and-a-half” for all hours worked in excess of 40 hours. You're given a list of the employ-
ees of the company, the number of hours each employee worked last week and the hourly rate of
each employee. Your program should input this information for each employee and should deter-
mine and display the employee's gross pay. Here is a sample input/output dialog:

Enter # of hours worked (-1 to end): 39
Enter hourly rate of the worker ($00.00): 10.00
Salary 1is $390.00

Enter # of hours worked (-1 to end): 40
Enter hourly rate of the worker ($00.00): 10.00
Salary 1is $400.00

Enter # of hours worked (-1 to end): 41
Enter hourly rate of the worker ($00.00): 10.00
Salary is $415.00

Enter # of hours worked (-1 to end): -1

3.21 (Preincrementing vs Postincrementing) Write a program that demonstrates the difference
between preincrementing and postincrementing using the increment operator ++.

3.22 (Checking if a Number is Prime) A prime number is any natural number greater than 1 that
is divisible only by 1 and by itself. Write a C program that reads an integer and determines whether
it is a prime number or not.

3.23 (Find the Largest Number) The process of finding the largest number (i.e., the maximum
of a group of numbers) is used frequently in computer applications. For example, a program that
determines the winner of a sales contest would input the number of units sold by each salesperson.
The salesperson who sells the most units wins the contest. Write a pseudocode program and then a
program that inputs a series of 10 non-negative numbers and determines and prints the largest of
the numbers. [Hint: Your program should use three variables as shown below.]

counter: A counter to count to 10 (i.e., to keep track of how many numbers have
been input and to determine when all 10 numbers have been processed)

number: The current number input to the program

largest: The largest number found so far

3.24 (Tabular Output) Write a program that uses looping to print the following table of values.
Use the tab escape sequence, \t, in the printf statement to separate the columns with tabs.

N N2 N3 N4
1 1 1
4 8 16
9 27 81
16 64 256

25 125 625
36 216 1296
49 343 2401
64 512 4096
81 729 6561
100 1000 10000

RHOONOUVTA WNR

o

140 Chapter 3 Structured Program Development in C

3.25 (Tabular Output) Write a program that utilizes looping to produce the following table of
values:

A A+3 A+6 A+9
7 10 13 63

14 17 20 126
21 24 27 189
28 31 34 252
35 38 41 315

3.26 (Find the Two Largest Numbers) Using an approach similar to Exercise 3.23, find the two
largest values of the 10 numbers. [Note: You may input each number only once.]

3.27 (Validating User Input) Modify the program in Figure 3.10 to validate its inputs. On any
input, if the value entered is other than 1 or 2, keep looping until the user enters a correct value.

3.28 What does the following program print?

#include <stdio.h>

|

2 int main(void)

3

4 {

5 int x = 1;

6 int y = 0;

7 while (x <=5) { // loop 5 times

8 total+= x * x; // perform calculation
9 printf("%d\n", x*x);

10 ++X; // increment counter x

1 } // end while

12 printf("Total is %d\n", total); // display result

13 } // end function main

3.29 What does the following program print?

#include <stdio.h>

|

2

3 int main(void)

4 {

5 int outer_count = 1; // initialize count
6 while (outer_count <= 10) { // Toop 10 times
7 int inner_count = 1;

8 while (inner_count <= outer_count) {
9 printf("#");

10 inner_count++;

11 } // end inner while

12 printf("\n");

13 outer_count++;

14 } // end outer while

15 } // end main

3.30 (Dangling-Else Problem) Determine the output for each of the following when x is 9 and y
is 11, and when x is 11 and y is 9. The compiler ignores the indentation in a C program. Also, the
compiler always associates an e1se with the previous 1f unless told to do otherwise by the placement

Exercises 141

of braces {}. Because, on first glance, you may not be sure which 1 f an e1se matches, this is referred
to as the “dangling else” problem. We eliminated the indentation from the following code to make
the problem more challenging. [Hinz: Apply indentation conventions you have learned.]

a) if (x <)
if Cy >)
puts(Db
else
puts()
puts();
b) if (x < {
if Cy >
puts(Db
}
else {
puts();
puts(Dk
}

3.31 (Another Dangling-Else Problem) Modify the following code to produce the output shown.
Use proper indentation techniques. You may not make any changes other than inserting braces. The
compiler ignores the indentation in a program. We eliminated the indentation from the following
code to make the problem more challenging. [Vote: It’s possible that no modification is necessary.]

if (y=)
if (x =)
puts()5
else
puts(
puts(
puts(

(SRR

a) Assuming x = 5 and y = 8, the following output is produced.

@@eea
$$$%%
&&&&&

b) Assuming x = 5 and y = 8, the following output is produced.

@@eea

c) Assuming x = 5 and y = 8, the following output is produced.

@@eea
&&&&&

d) Assuming x = 5 and y = 7, the following output is produced.

#it###
5%%
&&&&&

142 Chapter 3 Structured Program Development in C

3.32 (Square of Asterisks) Write a program that reads in the side of a square and then prints that
square out of asterisks. Your program should work for squares of all side sizes between 1 and 20. For
example, if your program reads a size of 4, it should print

3.33 (Hollow Square of Asterisks) Modify the program you wrote in Exercise 3.32 so that it
prints a hollow square. For example, if your program reads a size of 5, it should print

Fdededed

3.34 (Floyd's Triangle) Floyd’s Triangle is a right-angled triangular array of natural numbers. It
is defined by filling rows with consecutive integers. Thus, row 1 will have the number 1, row 2 will
have the numbers 2 and 3, and so on. Write a program that draws a 10-line Floyd’s triangle. An
outer loop can control the number of lines to be printed and an inner loop can ensure that each row
contains the correct number of integers.

3.35 (Printing the Decimal Equivalent of a Binary Number) Input an integer (5 digits or fewer)
containing only Os and 1s (i.e., a “binary” integer) and print its decimal equivalent. [Hint: Use the re-
mainder and division operators to pick off the “binary” number’s digits one at a time from right to left.
Just as in the decimal number system, in which the rightmost digit has a positional value of 1, and the
next digit left has a positional value of 10, then 100, then 1000, and so on, in the binary number sys-
tem the rightmost digit has a positional value of 1, the next digit left has a positional value of 2, then
4, then 8, and so on. Thus the decimal number 234 can be interpreted as 4 * 1 + 3 * 10 + 2 * 100.
The decimal equivalent of binary 1101is 1 *1+0*2+1*4+1*8o0r1+0+4 + 8 or 13.]

3.36 (Armstrong Numbers) Armstrong numbers are numbers that are equal to the sum of their dig-
its raised to power of the number of digits in them. The number 153, for example, equals 13 + 5% + 33
Thus it is an Armstrong number. Write a program to display all three-digit Armstrong numbers.

3.37 (Detecting Multiples of @ Number) Write a program that prints 500 dollar signs ($) one
after the other, separated by a space. After every fiftieth dollar sign, the program should print a
newline character. [Hinz: Count from 1 to 500. Use the remainder operator to recognize when the
counter reaches a multiple of 50]

3.38 (Counting 9s) Write a program that reads an integer (5 digits or fewer) and determines and
prints how many digits in the integer are 9s.

3.39 (Checkerboard Pattern of Asterisks) Write a program that displays the following checker-
board pattern:

EE I
EE I T

EE S T

EEE I

ksl
-

Making a Difference 143

Your program must use only three output statements, one of each of the following forms:

printf(y);
printf(y e
puts(); // outputs a newline

3.40 (Powers of 3 with an Infinite Loop) Write a program that keeps printing the powers of the
integer 3, namely 3, 9, 27, 91, 273, and so on. Your loop should not terminate (i.e., you should
create an infinite loop). What happens when you run this program?

3.41 (Diameter, Circumference and Area of a Cirle) Write a program that reads the radius of a
circle (as a float value) and computes and prints the diameter, the circumference and the area. Use
the value 3.14159 for .

3.42 What's wrong with the following statement? Rewrite it to accomplish what the programmer
was probably trying to do.

printf(, —Ox *y));

3.43 (Sides of a Triangle) Write a program that reads three nonzero integer values and deter-
mines and prints whether they could represent the sides of a triangle.

3.44 (Sides of a Right Triangle) Write a program that reads three nonzero integers and deter-
mines and prints whether they could be the sides of a right triangle.

3.45 (Factorial) The factorial of a nonnegative integer 7 is written 7! (pronounced “z factorial”)
and is defined as follows:
m=n-(m-1)-(n-2)-....1 (for values of 7 greater than or equal to 1)
and
nl=1 (forn=0).
For example, 5! =5-4 -3 .2 .1, which is 120.
a) Write a program that reads a nonnegative integer and computes and prints its factorial.
b) Write a program that estimates the value of the mathematical constant ¢ by using the

formula:
1 1 1
e=1l+=+—=+—=+...
1 21 3!
¢) Write a program that computes the value of ¢* by using the formula
x x XX
e = 1+ —=+=+=+
1 2! 3!

Making a Difference

3.46 (World-Population-Growth Calculator) Use the web to determine the current world pop-
ulation and the annual world population growth rate. Write an application that inputs these values,
then displays the estimated world population after one, two, three, four and five years.

3.47 (Target-Heart-Rate Calcularor) While exercising, you can use a heart-rate monitor to see
that your heart rate stays within a safe range suggested by your trainers and doctors. According to
the American Heart Association (AHA), the formula for calculating your maximum heart rate in
beats per minute is 220 minus your age in years. Your target heart rate is a range that’s 50-85% of
your maximum heart rate. [Note: These formulas are estimates provided by the AHA. Maximum
and target heart rates may vary based on the health, fitness and gender of the individual. Always con-
sult a physician or qualified health-care professional before beginning or modifying an exercise program.]
Create a program that reads the user’s birthday and the current day (each consisting of the month,
day and year). Your program should calculate and display the person’s age (in years), the person’s
maximum heart rate and the person’s target-heart-rate range.

144 Chapter 3 Structured Program Development in C

3.48 (Enforcing Privacy with Cryptography) The explosive growth of Internet communications
and data storage on Internet-connected computers has greatly increased privacy concerns. The field
of cryptography is concerned with coding data to make it difficult (and hopefully—with the most
advanced schemes—impossible) for unauthorized users to read. In this exercise you'll investigate a
simple scheme for encrypting and decrypting data. A company that wants to send data over the In-
ternet has asked you to write a program that will encrypt it so that it may be transmitted more se-
curely. All the data is transmitted as four-digit integers. Your application should read a four-digit
integer entered by the user and encrypz it as follows: Replace each digit with the result of adding 7
to the digit and getting the remainder after dividing the new value by 10. Then swap the first digit
with the third, and swap the second digit with the fourth. Then print the encrypted integer. Write
a separate application that inputs an encrypted four-digit integer and decryprs it (by reversing the
encryption scheme) to form the original number. [Optional reading project: In industrial-strength
applications, you’ll want to use much stronger encryption techniques than presented in this exercise.
Research “public key cryptography” in general and the PGP (Pretty Good Privacy) specific public-
key scheme. You may also want to investigate the RSA scheme, which is widely used in industrial-
strength applications.]

C Program Control

Objectives
In this chapter, you'll learn:

m The essentials of counter-
controlled iteration.

m To use the for and
do...whiTe iteration
statements to execute
statements repeatedly.

m To understand multiple
selection using the switch
selection statement.

m To use the break and
continue statements to
alter the flow of control.

m To use the logical operators
to form complex conditional
expressions in control
statements.

m Toavoid the consequences of
confusing the equality and
assignment operators.

146 Chapter4 C Program Control

4.1 Introduction 4.8 do...while Iteration Statement

4.2 lteration Essentials 4.9 break and continue Statements

4.3 Counter-Controlled Iteration 4.10 Logical Operators

4.4 for lteration Statement 4.11 Confusing Equality (==) and

4.5 for Statement: Notes and Assignment (=) Operators
Observations 4.12 Structured Programming Summary

4.6 Examples Using the for Statement 4.13 Secure C Programming
4.7 switch Multiple-Selection Statement

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

4.1 Introduction

You should now be comfortable with writing simple, complete C programs. In this chap-
ter, iteration is considered in greater detail, and additional iteration control statements,
namely the for and the do...while, are presented. The switch multiple-selection state-
ment is introduced. We discuss the break statement for exiting immediately from certain
control statements, and the continue statement for skipping the remainder of the body of
an iteration statement, then proceeding with the next iteration of the loop. The chapter
discusses logical operators used for combining conditions, and summarizes the principles
of structured programming as presented in Chapter 3 and this chapter.

4.2 lteration Essentials

Most programs involve iteration, or looping. A loop is a group of instructions the com-
puter executes repeatedly while some loop-continuation condition remains true. We've
discussed two means of iteration:

1. Counter-controlled iteration
2. Sentinel-controlled iteration

Counter-controlled iteration is sometimes called definite iteration because we know in ad-
vance exactly how many times the loop will be executed. Sentinel-controlled iteration is
sometimes called indefinite iteration because it’s not known in advance how many times the
loop will be executed.

In counter-controlled iteration, a control variable is used to count the number of iter-
ations. The control variable is incremented (usually by 1) each time the group of
instructions is performed. When the value of the control variable indicates that the correct
number of iterations has been performed, the loop terminates and execution continues
with the statement after the iteration statement.

Sentinel values are used to control iteration when:

1. The precise number of iterations isn’t known in advance, and
2. The loop includes statements that obtain data each time the loop is performed.

The sentinel value indicates “end of data.” The sentinel is entered after all regular data items
have been supplied to the program. Sentinels must be distinct from regular data items.

4.3 Counter-Controlled Iteration 147

4.3 Counter-Controlled Iteration

Counter-controlled iteration requires:
1. The name of a control variable (or loop counter).
2. The initial value of the control variable.
3. The increment (or decrement) by which the control variable is modified each
time through the loop.
4. The condition that tests for the final value of the control variable (i.e., whether
looping should continue).
Consider the simple program shown in Fig. 4.1, which prints the numbers from 1 to
10. The definition

unsigned 1int counter = 1; // initialization

names the control variable (counter), defines it to be an integer, reserves memory space
for it, and sets its initial value to 1.

// Fig. 4.1: fig04_01.c

1

2 // Counter-controlled iteration.
3 #include <stdio.h>

4

5 dnt main(void)

6 {

7 unsigned int counter = 1; // initialization
8

9 while (counter <= 10) { // iteration condition
10 printf ("%u\n", counter);
11 ++counter; // increment
12 }

13 }

1

2

3

4

5

6

7

8

9

10

Fig. 4.1 | Counter-controlled iteration.

The definition and initialization of counter also could have been written as

unsigned int counter;
counter = 1;

The definition is 7ot executable, but the assignment 5. We’'ll use both methods of setting
the values of variables.

148 Chapter4 C Program Control

The statement
++counter; // increment

increments the loop counter by 1 each time the loop is performed. The loop-continuation
condition in the while statement tests whether the value of the control variable is less than
or equal to 10 (the last value for which the condition is true). The body of this while is
performed even when the control variable is 10. The loop terminates when the control
variable exceeds 10 (i.e., counter becomes 11).

You could make the program in Fig. 4.1 more concise by initializing counter to 0 and
by replacing the while statement with

while (++counter <=) {
printf(, counter);

}

This code saves a statement because the incrementing is done directly in the while condi-
tion before the condition is tested. Coding in such a condensed fashion takes some prac-
tice. Some programmers feel that this makes the code too cryptic and error prone.

CpYe Common Programming Error 4.1
i’%\ Floating-point values may be approximate, so controlling counting loops with floating-

= point variables may result in imprecise counter values and inaccurate termination tests.

< Error-Prevention Tip 4.1

. Control counting loops with integer values.

Too many levels of nesting can make a program difficult to understand. As a rule, try to
avoid using more than three levels of nesting.

} Good Programming Practice 4.1
=) Lo ™

Good Programming Practice 4.2
} The combination of vertical spacing before and after control statements and indentation
SRS of the bodlies of control statements within the control-statement headers gives programs a
two-dimensional appearance that greatly improves program readability.

4.4 for Iteration Statement

The for iteration statement handles all the details of counter-controlled iteration. To illus-
trate its power, let’s rewrite the program of Fig. 4.1. The result is shown in Fig. 4.2. The
program operates as follows. When the for statement begins executing, the control variable
counter is defined and initialized to 1. Then, the loop-continuation condition counter <=
10 is checked. Because the initial value of counter is 1, the condition is satisfied, so the
printf statement (line 10) prints the value of counter, namely 1. The control variable
counter is then incremented by the expression ++counter, and the loop begins again with
the loop-continuation test. Because the control variable is now equal to 2, the final value is
not exceeded, so the program performs the printf statement again. This process continues
until the control variable counter is incremented to its final value of 11—this causes the
loop-continuation test to fail, and iteration terminates. The program continues by perform-
ing the first statement after the for statement (in this case, the program simply ends).

4.4 for lteration Statement 149

1 // Fig. 4.2: fig04_02.c

2 // Counter-controlled iteration with the for statement.
3 #include <stdio.h>

4

5 dnt main(void)

6 {

7 // initialization, iteration condition, and increment
8 // are all included in the for statement header.

9 for (unsigned 1int counter = 1; counter <= ; ++counter) {
10 printf(, counter);

11 }

12 3}

Fig. 4.2 | Counter-controlled iteration with the for statement.

for Statement Header Components

Figure 4.3 takes a closer look at the for statement of Fig. 4.2. Notice that the for state-
<« . »

ment “does it all”—it specifies each of the items needed for counter-controlled iteration

with a control variable. If there’s more than one statement in the body of the for, braces

are required to define the body of the loop—as we discussed in Section 3.6, you should

always place a control statement’s body in braces, even if it has only one statement.

Control Required Final value of control Required
for variable semicolon variable for which semicolon
keyword name separator the condition is true separator

for (unsigned int counter = 1; counter <= ; ++counter)
~—
Initial value of T) Increment of
control variable Loop-continuation control variable
condition

Fig. 4.3 | for statement header components.

Control Variables Defined in a for Header Exist Only Until the Loop Terminates
When you define the control variable in the for header before the first semicolon (;), as
in line 9 of Fig. 4.2:

for (unsigned int counter = 1; counter <= ; ++counter) {
the control variable exists only until the loop terminates.
Common Programming Error 4.2

For a control variable defined in a for statement’s header, attempting to access the control
variable after the for statement’s closing right brace (}) is a compilation error.

Off-By-One Errors

Notice that Fig. 4.2 uses the loop-continuation condition counter <= 10. If you incorrect-
ly wrote counter < 10, then the loop would be executed only 9 times. This is a common
logic error called an off-by-one error.

150 Chapter4 C Program Control

< Error-Prevention Tip 4.2

& Using the final value in the condition of a while or for statement and using the <= re-
lational operator can help avoid off-by-one errors. For a loop used to print the values 1 to
10, for example, the loop-continuation condition should be counter <= 10 rather than
counter < 11 or counter < 10.

General Format of a for Statement
The general format of the for statement is

for (initialization; condition; increment) {
statement

}

where the initialization expression initializes the loop-control variable (and might define
it, as we did in Fig. 4.2), the condition expression is the loop-continuation condition and
the increment expression increments the control variable.

Comma-Separated Lists of Expressions

Often, the initialization expression and the increment expression are comma-separated lists
of expressions. The commas as used here are actually comma operators which guarantee
that lists of expressions evaluate from left to right. The value and type of a comma-separated
list of expressions are the value and type of the rightmost expression in the list. The comma
operator is most often used in the for statement. Its primary use is to enable you to use mul-
tiple initialization and/or multiple increment expressions. For example, there may be two
control variables in a single for statement that must be initialized and incremented.

Software Engineering Observation 4.1

Place only expressions involving the control variables in the initialization and increment
~L3) sections of a for statement. Manipulations of other variables should appear either before
the loop (if they execute only once, like initialization statements) or in the loop body (if
they execute once per iteration, like incrementing or decrementing statements).

Expressions in the for Statement’s Header Are Optional

The three expressions in the for statement are optional. If the condition expression is omit-
ted, C assumes that the loop-continuation condition is #ue, thus creating an infinite loop.
You may omit the initialization expression if the control variable is initialized before the
for statement. The increment expression may be omitted if the increment is calculated by
statements in the for statement’s body or if no increment is needed.

Increment Expression Acts Like a Standalone Statement
The increment expression in the for statement acts like a standalone C statement at the
end of the body of the for. Therefore, the expressions

counter = counter +
counter +=
++counter
counter++

4.5 for Statement: Notes and Observations 151

are all equivalent in the increment part of the for statement. Some C programmers prefer
the form counter++ because the incrementing occurs affer the loop body executes, and the
postincrementing form seems more natural. Because the variable being preincremented or
postincremented here does 7oz appear in a larger expression, both forms of incrementing
have the same effect. The two semicolons in the for statement are required.

Common Programming Error 4.3
Using commas instead of semicolons in a for header is a syntax error.

Error-Prevention Tip 4.3

Infinite loops are caused when the loop-continuation condition in an iteration statement
never becomes false. To prevent infinite loops, ensure that you do not place a semicolon
z'mmedz'ately ﬂﬁ‘er a while statement’s header. In a counter-controlled loop, make sure the
control variable is incremented (or decremented) in the loop. In a sentinel-controlled loop,
make sure the sentinel value is eventually inpus.

4.5 for Statement: Notes and Observations

1. The initialization, loop-continuation condition and increment can contain arith-

-

s

Ye

metic expressions. For example, if x = 2 and y = 10, the statement
for (G =x; J<=4*x*y;j+=y/x)
is equivalent to the statement
for (j = 2; j <= 80; j += 5)
The “increment” may be negative (in which case it’s really a decrement and the
loop actually counts downward).

If the loop-continuation condition is initially fa/se, the loop body does 7oz exe-
cute. Instead, execution proceeds with the statement following the for statement.

The control variable is frequently printed or used in calculations in the body of a
loop, but it need not be. It’'s common to use the control variable for controlling
iteration while never mentioning it in the body of the loop.

The for statement is flowcharted much like the while statement. For example,
Fig. 4.4 shows the flowchart of the for statement

for (unsigned int counter = 1; counter <= ; ++counter) {
printf(, counter);
}

This flowchart makes it clear that the initialization occurs only once and that in-
crementing occurs affer the body statement each time it’s performed.

Error-Prevention Tip 4.4
Although the value of the control variable can be changed in the body of a for loop, this
can lead to subtle errors. It’s best not to change it.

152 Chapter4 C Program Control

Establish initial
value of control
variable \
unsigned int counter = 1

I~
v

true
counter <= 10 —» printf("%u", counter); —» ++counter
o / Body of loop Increment
Determine if final false (this may be many the control
value of control statements) variable

variable has been
reached

Fig. 4.4 | Flowcharting a typical for iteration statement.

4.6 Examples Using the for Statement
The following examples show methods of varying the control variable in a for statement.

1. Vary the control variable from 1 to 100 in increments of 1.
for (unsigned int i = 1; i <= 100; ++i)

2. Vary the control variable from 100 to 1 in increments of -1 (i.e., decrements of 1).
for (unsigned int i = 100; i >= 1; --1)

3. Vary the control variable from 7 to 77 in increments of 7.
for (unsigned int i =7; 1 <= 77; 1 +=7)

4. Vary the control variable from 20 to 2 in increments of -2.
for (unsigned int i = 20; i >= 2; i -= 2)

5. Vary the control variable over the following sequence of values: 2, 5, 8, 11, 14, 17.
for (unsigned int j = 2; j <= 17; j += 3)

6. Vary the control variable over the following sequence of values: 44, 33, 22, 11, 0.

for (unsigned int j = 44; j >= 0; j -= 11)

Application: Summing the Even Integers from 2 to 100
Figure 4.5 uses the for statement to sum all the even integers from 2 to 100. Each iteration
of the loop (lines 9—11) adds control variable number’s value to variable sum.

Good Programming Practice 4.3

3 Limit the size of control-statement headers to a single line if possible.

s 1

4.6 Examples Using the for Statement 153

1 // Fig. 4.5: fig04_05.c

2 // Summation with for.

3 #include <stdio.h>

4

5 dnt main(void)

6 {

7 unsigned int sum = 0; // initialize sum
8

9 for (unsigned int number = 2; number <= 100; number += 2) {
10 sum += number; // add number to sum
11 }
12
13 printf("Sum is %u\n", sum);
14 3}

Sum is 2550

Fig. 4.5 | Summation with for.

Application: Compound-Interest Calculations
The next example computes compound interest using the for statement. Consider the fol-
lowing problem statement:

A person invests $1000.00 in a savings account yielding 5% interest. Assuming that
all interest is left on deposit in the account, calculate and print the amount of money
in the account at the end of each year for 10 years. Use the following formula for

determining these amounts:
a=p(l+n)"
where

p is the original amount invested (i.e., the principal)
7 is the annual interest rate (for example, .05 for 5%)
n is the number of years

a is the amount on deposit at the end of the " year.

This problem involves a loop that performs the indicated calculation for each of the
10 years the money remains on deposit. The solution is shown in Fig. 4.6.

1 // Fig. 4.6: fig04_06.c

2 // Calculating compound interest.

3 #include <stdio.h>

4 #include <math.h>

5

6 int main(void)

7 {

8 double principal = 1000.0; // starting principal
9 double rate = .05; // annual interest rate
10
11 // output table column heads
12 printf("'%4s%21s\n", "Year", "Amount on deposit");

Fig. 4.6 | Calculating compound interest. (Part | of 2.)

154 Chapter4 C Program Control

13
14 // calculate amount on deposit for each of ten years
15 for (unsigned int year = 1; year <= ; ++year) {
16
17 // calculate new amount for specified year
18 double amount = principal * pow(+ rate, year);
19
20 // output one table row
21 printf(, year, amount);
22 }
23 }
Year Amount on deposit

1 1050.00

2 1102.50

3 1157.63

4 1215.51

5 1276.28

6 1340.10

7 1407.10

8 1477 .46

9 1551.33

10 1628.89

Fig. 4.6 | Calculating compound interest. (Part 2 of 2.)

The for statement executes the body of the loop 10 times, varying a control variable
from 1 to 10 in increments of 1. Although C does 7oz include an exponentiation operator,
we can use the Standard Library function pow (line 18) for this purpose. The function
pow(x, y) calculates the value of x raised to the yth power. It takes two arguments of type
doubTe and returns a double value.

Software Engineering Observation 4.2

Type double is a floating-point type like float, bur typically a variable of type double
can store a value of much greater magnitude with greater precision than float. Variables
of type double occupy more memory than those of type float. For all but the most
memory-intensive applications, professional programmers generally prefer double to
float.

The header <math.h> (line 4) should be included whenever a math function such as
pow is used. This program would malfunction without the inclusion of math.h, as the
linker would be unable to find the pow function.! Function pow requires two double
arguments, but variable year is an integer. The math. h file includes information that tells
the compiler to convert the value of year to a temporary double representation before
calling the function. This information is contained in pow’s function prototype. These are

1. On many Linux/UNIX C compilers, you must include the -1m option (e.g., gcc -1m fig04_06.c)
when compiling Fig. 4.6. This links the math library to the program.

4.7 switch Multiple-Selection Statement 155

explained in Chapter 5, where we also provide a summary of the pow function and other
math library functions.

A Caution about Using Type float or double for Monetary Amounts
Notice that we defined the variables amount, principal and rate to be of type doubTe.
We did this for simplicity because we’re dealing with fractional parts of dollars.

< Error-Prevention Tip 4.5
% Do not use variables of type float or double to perform monetary calculations. The im-
S preciseness of floating-point numbers can cause errors that will result in incorrect mone-
tary values. [In Exercise 4.23, we explore the use of integer numbers of pennies to perform
precise monetary calculations.]

Here is a simple explanation of what can go wrong when using float or double to
represent dollar amounts. Two float dollar amounts stored in the machine could be
14.234 (which with %.2f prints as 14.23) and 18.673 (which with %. 2f prints as 18.67).
When these amounts are added, they produce the sum 32.907, which with %.2f prints as
32.91. Thus your printout could appear as

14.23
+ 18.67

32.91

Clearly the sum of the individual numbers as printed should be 32.90! You’ve been
warned!

Formatting Numeric Output

The conversion specifier %21.2f is used to print the value of the variable amount in the
program. The 21 in the conversion specifier denotes the fie/d width in which the value will
be printed. A field width of 21 specifies that the value printed will appear in 21 print po-
sitions. The 2 specifies the precision (i.e., the number of decimal positions). If the number
of characters displayed is less than the field width, then the value will automatically be right
justified with leading spaces in the field. This is particularly useful for aligning floating-
point values with the same precision (so that their decimal points align vertically). To /eft
Justify a value in a field, place a - (minus sign) between the % and the field width. The mi-
nus sign may also be used to left justify integers (such as in %-6d) and character strings
(such as in %-8s). We'll discuss the powerful formatting capabilities of printf and scanf
in detail in Chapter 9.

4.7 switch Multiple-Selection Statement

In Chapter 3, we discussed the if single-selection statement and the if...e1se double-
selection statement. Occasionally, an algorithm will contain a series of decisions in which a
variable or expression is tested separately for each of the constant integral values it may as-
sume, and different actions are taken. This is called multiple selection. C provides the
switch multiple-selection statement to handle such decision making.

The switch statement consists of a series of case labels, an optional default case and
statements to execute for each case. Figure 4.7 uses switch to count the number of each
different letter grade students earned on an exam.

156 Chapter 4 C Program Control

VoO~NONUNDE UWN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

// Fig. 4.7: fig04_07.c
// Counting letter grades with switch.
#include <stdio.h>

int main(void)

{
unsigned int aCount =
unsigned int bCount =
unsigned int cCount =
unsigned int dCount =
unsigned int fCount =

(=N =N}

puts("Enter the letter grades.");
puts("Enter the EOF character to end input.");
int grade; // one grade

// Toop until user types end-of-file key sequence
while ((grade = getchar()) != EOF) {

// determine which grade was input
switch (grade) { // switch nested in while

case 'A': // grade was uppercase A
case 'a': // or lowercase a

++aCount;

break; // necessary to exit switch

case 'B': // grade was uppercase B
case 'b': // or Towercase b
++bCount;
break;

case 'C': // grade was uppercase C
case 'c': // or Towercase c
++cCount;
break;

case 'D': // grade was uppercase D
case 'd': // or Towercase d
++dCount;
break;

case 'F': // grade was uppercase F
case 'f': // or Towercase f
++fCount;
break;

case '\n': // dignore newlines,

case '\t': // tabs,

case ' ': // and spaces in input
break;

Fig. 4.7 | Counting letter grades with switch. (Part | of 2.)

4.7 switch Multiple-Selection Statement 157

52

53 default: // catch all other characters

54 printf("%s", "Incorrect letter grade entered.);
55 puts(" Enter a new grade.');

56 break; // optional; will exit switch anyway
57 }

58 } // end while

59

60 // output summary of results

61 puts("\nTotals for each letter grade are:");

62 printf("A: %u\n", aCount);

63 printf("B: %u\n", bCount);

64 printf('C: %u\n", cCount);

65 printf("'D: %u\n", dCount);

66 printf("F: %u\n", fCount);

67 }

Enter the letter grades.
Enter the EOF character to end input.

ncorrect letter grade entered. Enter a new grade.

>ST P>PO0OHMAOA-HAZ>NNT O

Z —— Not all systems display a representation of the EOF character
otals for each Tletter grade are:

T
A:
B:
C
D
F

R NWN W

Fig. 4.7 | Counting letter grades with switch. (Part 2 of 2.)

Reading Character Input

In the program, the user enters letter grades for a class. In the while header (line 18),
while ((grade = getchar()) != EOF)

the parenthesized assignment (grade = getchar()) executes first. The getchar function
(from <stdio.h>) reads one character from the keyboard and stores that character in the
integer variable grade. Characters are normally stored in variables of type char. However,
an important feature of C is that characters can be stored in any integer data type because
they’re usually represented as one-byte integers in the computer. Function getchar re-

158 Chapter4 C Program Control

turns as an int the character that the user entered. We can treat a character as either an
integer or a character, depending on its use. For example, the statement

printf(] :)8

uses the conversion specifiers %c and %d to print the character 'a’ and its integer value, re-
spectively. The result is

The character (a) has the value 97.

ASCII

The integer 97 is the character’s numerical representation in the computer. Many com-
puters today use the ASCII (American Standard Code for Information Interchange)
character set in which 97 represents the lowercase letter "a'. A list of the ASCII characters
and their decimal values is presented in Appendix B. Characters can be read with scanf
by using the conversion specifier %c.

Assignments Have Values
Assignments as a whole actually have a value. This value is assigned to the variable on the
left side of the =. The value of the assignment expression grade = getchar() is the charac-
ter that’s returned by getchar and assigned to the variable grade.

The fact that assignments have values can be useful for setting several variables to the
same value. For example,

a=b=c=0;

first evaluates the assighment ¢ = 0 (because the = operator associates from right to left).
The variable b is then assigned the value of the assignment ¢ = 0 (which is 0). Then, the
variable a is assigned the value of the assignment b = (¢ = 0) (which is also 0). In the pro-
gram, the value of the assignment grade = getchar() is compared with the value of EOF
(a symbol whose acronym stands for “end of file”). We use EOF (which normally has the
value -1) as the sentinel value. The user types a system-dependent keystroke combination
to mean “end of file”—i.e., “I have no more data to enter.” EOF is a symbolic integer con-
stant defined in the <stdio.h> header (we'll see in Chapter 6 how symbolic constants are
defined). If the value assigned to grade is equal to EOF, the program terminates. We've
chosen to represent characters in this program as ints because EOF has an integer value
(again, normally -1).

- Portability Tip 4.1
ly The keystroke combinations for entering EOF (end of file) are system dependent.

- Portability Tip 4.2
ay Testing for the symbolic constant EOF (rather than —1) makes programs more portable.
20 The C standard states that EOF is a negative integral value (but not necessarily -1). Thus,
EOF could have different values on different systems.

Entering the EOF Indicator
On Linux/UNIX/Mac OS X systems, the EOF indicator is entered by typing

<Ctrl> d

4.7 switch Multiple-Selection Statement 159

on a line by itself. This notation <C#/> 4 means to simultaneously press both the Ctrl key
and the 4 key. On other systems, such as Microsoft Windows, the EOF indicator can be
entered by typing

<Ctrl> z

You also need to press Enter on Windows.

The user enters grades at the keyboard. When the Enter key is pressed, the characters
are read by function getchar one at a time. If the character entered is not equal to EOF,
the switch statement (lines 21-57) is entered.

switch Statement Details

Keyword switch is followed by the variable name grade in parentheses. This is called the
controlling expression. The value of this expression is compared with each of the case
labels. Assume the user has entered the letter C as a grade. C is automatically compared to
each case in the switch. If a match occurs (case 'C':), the statements for that case are
executed. In the case of the letter C, cCount is incremented by 1 (line 35), and the switch
statement is exited immediately with the break statement.

The break statement causes program control to continue with the first statement after
the switch statement. The break statement is used because the cases in a switch state-
ment would otherwise run together. If break is 7oz used anywhere in a switch statement,
then each time a match occurs in the statement, the statements for // the remaining cases
will be executed. (This feature—called fall-through—is rarely useful, although it’s perfect
for programming Exercise 4.38—the iterative song “The Twelve Days of Christmas™) If
no match occurs, the default case is executed, and an error message is printed.

switch Statement Flowchart

Each case can have one or more actions. The switch statement is different from all other
control statements in that braces are 7ot required around multiple actions in a case of a
switch. The general switch multiple-selection statement (using a break in each case) is
flowcharted in Fig. 4.8. The flowchart makes it clear that each break statement at the end
of a case causes control to immediately exit the switch statement.

Forgetting a break statement when one is needed in a switch statement is a logic error.

= % Common Programming Error 4.4

<~ Error-Prevention Tip 4.6

ﬁ Provide a default case in switch statements. Values not explicitly tested in a switch
would normally be ignored. The default case helps prevent this by focusing you on the
need to process exceptional conditions. Sometimes no default processing is needed.

Although the case clauses and the default case clause in a switch statement can occur
in any order, it’s common to place the default clause last.

} Good Programming Practice 4.4

In a switch statement, when the default clause is last, the break statement isn’t re-
quired. You may prefer to include this break for clarity and symmetry with other cases.

} Good Programming Practice 4.5

160 Chapter4 C Program Control

true

case a —» case aactions(s) —» break —
falsel
case b tr_ue» case b actions(s) —» break —
falsel

.

true 5
case z —» case zactions(s) —» break —»
falsel
default actions(s)

i:
O

Fig. 4.8 | switch multiple-selection statement with breaks.

Ignoring Newline, Tab and Blank Characters in Input
In the switch statement of Fig. 4.7, the lines

case : // ignore newlines,

case : // tabs,

case : // and spaces in input
break;

cause the program to skip newline, tab and blank characters. Reading characters one at a time
can cause problems. To have the program read the characters, you must send them to the
computer by pressing Enter. This causes the newline character to be placed in the input after
the character we wish to process. Often, this newline must be specifically ignored to make
the program work correctly. The preceding cases in our switch statement prevent the error
message in the defauTt case from being printed each time a newline, tab or space is encoun-
tered in the input. So each input causes two iterations of the loop—the first for the letter
grade and the second for "\n". Listing several case labels together (such as case 'D": case
"d": in Fig. 4.7) simply means that the same set of actions is to occur for each of the cases.

<= Error-Prevention Tip 4.7
Remember to provide processing capabilities for newline (and possibly other white-space)
characters in the input when processing characters one at a time.

s

4.8 do...while Iteration Statement 161

Constant Integral Expressions

When using the switch statement, remember that each individual case can test only a
constant integral expression—i.c., any combination of character constants and integer
constants that evaluates to a constant integer value. A character constant can be represent-
ed as the specific character in single quotes, such as 'A". Characters must be enclosed with-
in single quotes to be recognized as character constants—characters in double quotes are
recognized as strings. Integer constants are simply integer values. In our example, we've
used character constants. Remember that characters are represented as small integer values.

Notes on Integral Types

Portable languages like C must have flexible data-type sizes. Different applications may
need integers of different sizes. C provides several data types to represent integers. In addi-
tion to int and char, C provides types short int (which can be abbreviated as short) and
Tong int (which can be abbreviated as Tong), as well as unsigned variations of all the inte-
gral types. In Section 5.14, we'll see that C also provides type Tong Tong int. The C stan-
dard specifies the minimum range of values for each integer type, but the actual range may
be greater and depends on the implementation. For short ints the minimum range is —
32767 to +32767. For most integer calculations, Tong ints are sufficient. The minimum
range of values for Tong ints is —2147483647 to +2147483647. The range of values for an
int is greater than or equal to that of a short int and less than or equal to that of a Tong
int. On many of today’s platforms, ints and Tong ints represent the same range of values.
The data type signed char can be used to represent integers in the range —127 to +127 or
any of the characters in the computer’s character set. See Section 5.2.4.2 of the C standard
document for the complete list of signed and unsigned integer-type ranges.

4.8 do...while Iteration Statement

The do...whiTe iteration statement is similar to the while statement. In the while state-
ment, the loop-continuation condition is tested at the beginning of the loop before the
body of the loop is performed. The do...whiTe statement tests the loop-continuation con-
dition affer the loop body is performed. Therefore, the loop body will always execute a2
least once. When a do...while terminates, execution continues with the statement after the
while clause. The do...whiTe statement is written as follows:

do {
statements
} while (condition); // semicolon is required here

Figure 4.9 uses a do...while statement to print the numbers from 1 to 10. We chose
to preincrement the control variable counter in the loop-continuation test (line 11).

// Fig. 4.9: fig04_09.c
// Using the do...while iteration statement.
#include <stdio.h>

int main(void)

{

NN h WN -

Fig. 4.9 | Using the do...whi1le iteration statement. (Part | of 2.)

162 Chapter4 C Program Control

7 unsigned 1int counter = 1; // initialize counter
8

9 do {

10 printf(, counter);

11 } while (++counter <=);

12 3}

12 3 45 6 7 8 9 10

Fig. 4.9 | Using the do...while iteration statement. (Part 2 of 2.)

do...while Statement Flowchart
Figure 4.10 shows the do...while statement flowchart, which makes it clear that the loop-
continuation condition does not execute until after the action is performed az least once.

i)
action(s)

. true
condition

falseg>

Fig. 4.10 | Flowcharting the do...whiTe iteration statement.

4.9 break and continue Statements

The break and continue statements are used to alter the flow of control. Section 4.7
showed how break can be used to terminate a switch statement’s execution. This section
discusses how to use break in an iteration statement.

break Statement

The break statement, when executed in a while, for, do...while or switch statement,
causes an immediate exit from that statement. Program execution continues with the next
statement after that while, for, do...while or switch. Common uses of break are to es-
cape early from a loop or to skip the remainder of a switch (as in Fig. 4.7). Figure 4.11
demonstrates the break statement (1ine 14) in a for iteration statement. When the if
statement detects that x has become 5, break is executed. This terminates the for state-
ment, and the program continues with the printf after the for. The loop fully executes
only four times. We declared x before the loop in this example, so that we could use its
final value after the loop terminates. Recall that when you declare the control variable in
a for loop’s initialization expression, the variable no longer exists after the loop terminates.

4.9 break and continue Statements

163

1 // Fig. 4.11: fig04_11.c

2 // Using the break statement in a for statement.
3 #include <stdio.h>

4

5 dnt main(void)

6 {

7 unsigned int x; // declared here so it can be used after loop
8

9 // Toop 10 times

10 for (x = 1; x <= 10; ++x) {

11

12 // if x is 5, terminate Toop

13 if (x == 5) {

14 break; // break Toop only if x is 5

15 }

16

17 printf("%u ", x);

18 }

19
20 printf("\nBroke out of Toop at x == %u\n", Xx);
21 }

1234

Broke out of Toop at x ==

Fig. 4.11 | Using the break statement in a for statement.

continue Statement
The continue statement, when executed in a while, for or do...while statement, skips the
remaining statements in that control statement’s body and performs the next iteration of the
loop. In while and do...whi7e statements, the loop-continuation test is evaluated immedi-
ately affer the continue statement executes. In the for statement, the increment expression
executes, then the loop-continuation test is evaluated. Figure 4.12 uses continue (line 12)
in the for statement to skip the printf statement and begin the next iteration of the loop.

VOoO~NONUND WN -

10
11
12
13
14
15
16

// Fig. 4.12: fig04_12.c
// Using the continue statement in a for statement.
#include <stdio.h>

int main(void)
{
// Toop 10 times
for (unsigned int x = 1; x <= 10; ++x) {

// if x is 5, continue with next iteration of Toop
if (x == 5) {
continue; // skip remaining code in loop body

}

printf("%u ", x);
}

Fig. 4.12 | Using the continue statement in a for statement. (Part | of 2.)

164 Chapter4 C Program Control

17
18 puts (J;
19 1}

1234678910
Used continue to skip printing the value 5

Fig. 4.12 | Using the continue statement in a for statement. (Part 2 of 2.)

Software Engineering Observation 4.3

Some programmers feel that break and continue violate the norms of structured
=45 programming. The effects of these statements can be achieved by structured programming
techniques we'll soon discuss, so these programmers do not use break and continue.

Performance Tip 4.1
. The break and continue statements, when used properly, perform faster than the cor-
" responding structured techniques that we'll soon learn.

Software Engineering Observation 4.4

There’s a tension between achieving quality software engineering and achieving the best-
=45y performing software. Often one of these goals is achieved at the expense of the other. For
all but the most performance-intensive situations, apply the following guidelines: First,
make your code simple and correct; then make it fast and small, but only if necessary.

4.10 Logical Operators

So far we've studied only simple conditions, such as counter <= 10, total > 1000, and
humber != sentinelValue. We've expressed these conditions in terms of the relational oper-
ators, >, <, >= and <=, and the equality operators, == and !=. Each decision tested precisely one
condition. To test multiple conditions in the process of making a decision, we had to per-
form these tests in separate statements or in nested if or if...else statements. C provides
logical operators that may be used to form more complex conditions by combining simple
conditions. The logical operators are && (logical AND), || (logical OR) and ! (logical
NOT, also called logical negation). We'll consider examples of each of these operators.

Logical AND (&&) Operator
Suppose we wish to ensure that two conditions are bozh true before we choose a certain
path of execution. In this case, we can use the logical operator && as follows:

if (gender == 1 && age >=) {
++seniorFemales;

}

This if statement contains two simple conditions. The condition gender == 1 might be
evaluated, for example, to determine whether a person is a female. The condition age >=
65 is evaluated to determine whether a person is a senior citizen. The two simple condi-
tions are evaluated first because == and >= each have higher precedence than &&. The if
statement then considers the combined condition gender == 1 & age >= 65, which is true

4.10 Logical Operators 165

if and only if both of the simple conditions are srue. Finally, if this combined condition is
true, then the count of seniorFemales is incremented by 1. If either or both of the simple
conditions are false, then the program skips the incrementing and proceeds to the state-
ment following the if.

Figure 4.13 summarizes the & & operator. The table shows all four possible combi-
nations of zero (false) and nonzero (true) values for expressionl and expression2. Such
tables are often called truth tables. C evaluates all expressions that include relational opera-
tors, equality operators, andfor logical operators to 0 or 1. Although C sezs a true value to 1,
it accepts any nonzero value as true.

expression | expression2 expression| && expression2
0 0 0
0 nonzero 0
nonzero 0 0
nonzero nonzero 1

Fig. 4.13 | Truth table for the logical AND (&&) operator.

Logical OR (11) Operator

Now let’s consider the | | (logical OR) operator. Suppose we wish to ensure at some point
in a program that either or both of two conditions are true before we choose a certain path
of execution. In this case, we use the || operator, as in the following program segment:

if (semesterAverage >= 90 || finalExam >= 90) {
puts("Student grade is A");
}

This statement also contains two simple conditions. The condition semesterAverage >=
90 is evaluated to determine whether the student deserves an “A” in the course because of
a solid performance throughout the semester. The condition finalExam >= 90 is evaluated
to determine whether the student deserves an “A” in the course because of an outstanding
performance on the final exam. The i f statement then considers the combined condition

semesterAverage >= 90 || finalExam >= 90

and awards the student an “A” if either or both of the simple conditions are #7ue. The mes-
sage “Student grade is A” is not printed only when bozh of the simple conditions are false
(zero). Figure 4.14 is a truth table for the logical OR operator (| 1).

expression | expression2 expression| || expression2
0 0 0
0 nonzero 1
nonzero 0 1
nonzero nonzero 1

Fig. 4.14 | Truth table for the logical OR (| |) operator.

166 Chapter4 C Program Control

Short-Circuit Evaluation

The && operator has a higher precedence than | |. Both operators associate from left to
right. An expression containing & or | | operators is evaluated ondy until truch or falsehood
is known. Thus, evaluation of the condition

gender == 1 && age >= 65

will stop if gender is not equal to 1 (i.e., the entire expression is guaranteed to be false), and
continue if gender is equal to 1 (i.e., the entire expression could still be true if age >= 65).
This performance feature for the evaluation of logical AND and logical OR expressions is
called short-circuit evaluation.

5. Performance Tip 4.2

ﬂe' In expressions using operator && make the condition that’s most likely to be false the lefi-

= nost condition. In expressions using operator | |, make the condition that's most likely to
be true the lefimost condition. This can reduce a program’s execution time.

Logical Negation (!) Operator

C provides the ! (logical negation) operator to enable you to “reverse” the meaning of a
condition. Unlike operators && and | |, which combine #wo conditions (and are therefore
binary operators), the logical negation operator has only a single condition as an operand
(and is therefore a unary operator). The logical negation operator is placed before a con-
dition when we’re interested in choosing a path of execution if the original condition
(without the logical negation operator) is false, such as in the following program segment:

if (!(grade == sentinelValue)) {
printf("The next grade is %f\n", grade);
}

The parentheses around the condition grade == sentinelValue are needed because the
logical negation operator has a higher precedence than the equality operator. Figure 4.15
is a truth table for the logical negation operator.

expression lexpression
1

0

nonzero 0
Fig. 4.15 | Truth table for operator ! (logical negation).

In most cases, you can avoid using logical negation by expressing the condition dif-
ferently with an appropriate relational operator. For example, the preceding statement
may also be written as:

if (grade !'= sentinelValue) {
printf("The next grade is %f\n", grade);
}

4.11 Confusing Equality (==) and Assignment (=) Operators 167

Summary of Operator Precedence and Associativity
Figure 4.16 shows the precedence and associativity of the operators introduced to this
point. The operators are shown from top to bottom in decreasing order of precedence.

Operators Associativity Type

++ (postfix) -~ (postfix) right to left postfix

+ = U 4+ (prefix) -- (prefix) (ype) right to left unary
/% left to right multiplicative
+ - left to right additive

< <= > >= left to right relational

1= left to right equality

&& left to right logical AND
I left to right logical OR
Py right to left conditional
= 4= -= %= = %= right to left assighment

, left to right comma

Fig. 4.16 | Operator precedence and associativity.

The _Bool Data Type

The C standard includes a boolean type—represented by the keyword _Bool—which can
hold only the values 0 or 1. Recall C’s convention of using zero and nonzero values to rep-
resent false and true—the value 0 in a condition evaluates to false, while any nonzero value
evaluates to true. Assigning any nonzero value to a _Bool sets it to 1. The standard also
includes the <stdbool.h> header, which defines boo1 as a shorthand for the type _Boo1,
and true and false as named representations of 1 and 0, respectively. At preprocessor
time, bool, true and false are replaced with _Boo1, 1 and 0. Section E.4 presents an ex-
ample that uses booT, true and false. The example uses a programmer-defined function,
a concept we introduce in Chapter 5. You can study the example now, but you might wish
to revisit it after reading Chapter 5.

4.11 Confusing Equality (==) and Assignment (=)
Operators

There’s one type of error that C programmers, no matter how experienced, tend to make
so frequently that we feel it is worth a separate section. That error is accidentally swapping
the operators == (equality) and = (assignment). What makes these swaps so damaging is
the fact that they do nor ordinarily cause compilation errors. Rather, statements with these
errors ordinarily compile correctly, allowing programs to run to completion while likely
generating incorrect results through runtime logic errors.

Two aspects of C cause these problems. One is that any expression that produces a
value can be used in the decision portion of any control statement. If the value is 0, ic’s
treated as false, and if the value is nonzero, it’s treated as true. The second is that assign-

168 Chapter4 C Program Control

ments in C produce a value, namely the value that’s assigned to the variable on the left side
of the assignment operator.
For example, suppose we intend to write

if (payCode == 4) {
printf(s);
}

but we accidentally write

if (payCode = 4) {
printf(s);

}

The first i f statement properly awards a bonus to the person whose paycode is equal to 4.
The second i f statement—the one with the error—evaluates the assignment expression in
the i f condition. This expression is a simple assignment whose value is the constant 4. Be-
cause any nonzero value is interpreted as “true,” the condition in this if statement is al-
ways true, and not only is the value of payCode inadvertently set to 4, but the person always
receives a bonus regardless of what the actual paycode is!

i 3 Using operator == for assignment or using operator = for equality is a logic error.

7z Common Programming Error 4.5
lvalues and rvalues
You'll probably be inclined to write conditions such as x == 7 with the variable name on
the left and the constant on the right. By reversing these terms so that the constant is on
the left and the variable name is on the right, as in 7 == x, then if you accidentally replace
the == operator with =, you’ll be protected by the compiler. The compiler will treat this as
a syntax error, because only a variable name can be placed on the left-hand side of an as-
signment expression. This will prevent the potential devastation of a runtime logic error.
Variable names are said to be lvalues (for “left values”) because they can be used on
the /leff side of an assignment operator. Constants are said to be rvalues (for “right values”)
because they can be used only on the right side of an assignment operator. fvalues can also
be used as rvalues, but not vice versa.

< Error-Prevention Tip 4.8

& When an equality expression has a variable and a constant, as in x == 1, you may prefer
to write it with the constant on the left and the variable name on the right (i.e., 1 == x)
as protection against the logic error that occurs when you accidentally replace operator ==
with =.

Confusing == and = in Standalone Statements
The other side of the coin can be equally unpleasant. Suppose you want to assign a value
to a variable with a simple statement such as

4.12 Structured Programming Summary 169

Here, too, this is not a syntax error. Rather the compiler simply evaluates the conditional
expression. If x is equal to 1, the condition is true and the expression returns the value 1.
If x is not equal to 1, the condition is false and the expression returns the value 0. Regard-
less of what value is returned, there’s no assignment operator, so the value is simply Josz,
and the value of x remains unaltered, probably causing an execution-time logic error. Un-
fortunately, we do not have a handy trick available to help you with this problem! Many
compilers, however, will issue a warning on such a statement.

< Error-Prevention Tip 4.9
After you write a program, text search it for every = and check that it’s used properly. This
can help you prevent subtle bugs.

.

4.12 Structured Programming Summary

Just as architects design buildings by employing the collective wisdom of their profession,
so should programmers design programs. Our field is younger than architecture is, and our
collective wisdom is considerably sparser. We've learned a great deal in a mere cight de-
cades. Perhaps most important, we've learned that structured programming produces pro-
grams that are easier (than unstructured programs) to understand and therefore are easier
to test, debug, modify, and even prove correct in a mathematical sense.

Chapters 3 and 4 have concentrated on C’s control statements. Each statement has
been presented, flowcharted and discussed separately with examples. Now, we summarize
the results of Chapters 3 and 4 and introduce a simple set of rules for the formation and
properties of structured programs.

Figure 4.17 summarizes the control statements discussed in Chapters 3 and 4. Small
circles are used in the figure to indicate the single entry point and the single exit point of each
statement. Connecting individual flowchart symbols arbitrarily can lead to unstructured
programs. Therefore, the programming profession has chosen to combine flowchart sym-
bols to form a limited set of control statements, and to build only properly structured pro-
grams by combining control statements in two simple ways. For simplicity, only single-
entry/single-exit control statements are used—there’s only one way to enter and only one
way to exit each control statement. Connecting control statements in sequence to form
structured programs is simple—the exit point of one control statement is connected to the
entry point of the next—i.e., the control statements are simply placed one after another in
a program—we ve called this “control-statement stacking.” Control statements also can be
nested.

Figure 4.18 shows the rules for forming structured programs. The rules assume that
the rectangle flowchart symbol may be used to indicate any action including input/output.
Figure 4.19 shows the simplest flowchart.

Applying the rules of Fig. 4.18 always results in a structured flowchart with a neat,
building-block appearance. Repeatedly applying Rule 2 to the simplest flowchart
(Fig. 4.19) results in a structured flowchart containing many rectangles iz sequence
(Fig. 4.20). Rule 2 generates a stack of control statements; so we call Rule 2 the stacking
rule.

170 Chapter 4 C Program Control

Sequence Selection

o
i

i

if statement if...else statement
? (single selection) (double selection)

T l F‘T l

switch statement
? multiple selection

2 md
o F

~ -
F
O

____________ S
Repetition
wh1iTe statement do...whiTe statement for statement

TR g

i
N

F F

O

body increment

Fig. 4.17 | C's single-entry/single-exit sequence, selection and iteration statements.

4.12 Structured Programming Summary 171

Rules for forming structured programs

1. Begin with the “simplest flowchart” (Fig. 4.19).

2. (“Stacking” rule) Any rectangle (action) can be replaced by zwo rectan-
gles (actions) in sequence.

3. (“Nesting” rule) Any rectangle (action) can be replaced by a7y control
statement (scquencc, if, if...else, switch, while, do...while or for).

4. Rules 2 and 3 may be applied as often as you like and in any order.

Fig. 4.18 | Rules for forming structured programs.

i

Fig. 4.19 | Simplest flowchart.

Rule 2 Rule 2 Rule 2

L%i
L#ﬂi

T

S

Fig. 4.20 | Repeatedly applying Rule 2 of Fig. 4.18 to the simplest flowchart.

Rule 3 is called the nesting rule. Repeatedly applying Rule 3 to the simplest flowchart
results in a flowchart with neatly nested control statements. For example, in Fig. 4.21, the
rectangle in the simplest flowchart is first replaced with a double-selection (if...else)

172 Chapter4 C Program Control

statement. Then Rule 3 is applied again to both of the rectangles in the double-selection
statement, replacing each of these rectangles with double-selection statements. The dashed
box around each of the double-selection statements represents the rectangle that was
replaced in the original flowchart.

Fig. 4.21 | Applying Rule 3 of Fig. 4.18 to the simplest flowchart.

Rule 4 generates larger, more involved, and more deeply nested structures. The flow-
charts that emerge from applying the rules in Fig. 4.18 constitute the set of all possible
structured flowcharts and hence the set of all possible structured programs.

I¢’s because of the elimination of the goto statement that these building blocks never
overlap one another. The beauty of the structured approach is that we use only a small
number of simple single-entry/single-exit pieces, and we assemble them in only zwo simple
ways. Figure 4.22 shows the kinds of stacked building blocks that emerge from applying
Rule 2 and the kinds of nested building blocks that emerge from applying Rule 3. The
figure also shows the kind of overlapped building blocks that cannot appear in structured
flowcharts (because of the elimination of the goto statement).

4.12 Structured Programming Summary 173

Stacked building blocks Nested building blocks

1l

Overlapping building blocks
(llegal in structured programs)

Fig. 4.22 | Stacked, nested and overlapped building blocks.

If the rules in Fig. 4.18 are followed, an unstructured flowchart (such as that in
Fig. 4.23) cannot be created. If you’re uncertain whether a particular flowchart is struc-
tured, apply the rules of Fig. 4.18 in reverse to try to reduce the flowchart to the simplest
flowchart. If you succeed, the original flowchart is structured; otherwise, it’s not.

=22

Fig. 4.23 | Anunstructured flowchart.

Structured programming promotes simplicity. Bohm and Jacopini showed that only
three forms of control are needed:

* Sequence
* Selection

e Jteration

174 Chapter4 C Program Control

Sequence is straightforward. Selection is implemented in one of three ways:
* if statement (single selection)

e if...else statement (double selection)

* switch statement (multiple selection)

I¢’s straightforward to prove that the simple if statement is sufficient to provide any form
of selection—everything that can be done with the if...e1se statement and the switch
statement can be implemented with one or more 1f statements.

Iteration is implemented in one of three ways:

* while statement
® do...while statement
* for statement

I¢’s also straightforward to prove that the while statement is sufficient to provide any
form of iteration. Everything that can be done with the do...while statement and the for
statement can be done with the while statement.

Combining these results illustrates that any form of control ever needed in a C pro-
gram can be expressed in terms of only #hree forms of control:

* sequence
e if statement (selection)
* while statement (iteration)

And these control statements can be combined in only mwo ways—stacking and
nesting. Indeed, structured programming promotes simplicity.

In Chapters 3 and 4, we've discussed how to compose programs from control state-
ments containing only actions and decisions. In Chapter 5, we introduce another pro-
gram-structuring unit called the function. We’ll learn to compose large programs by
combining functions, which, in turn, can be composed of control statements. We’ll also
discuss how using functions promotes software reusability.

4.13 Secure C Programming

Checking Function scanf’s Return Value

Figure 4.6 used the math library function pow, which calculates the value of its first argu-
ment raised to the power of its second argument and returns the result as a double value.
The calculation’s result was then used in the statement that called pow.

Many functions return values indicating whether they executed successfully. For
example, function scanf returns an int indicating whether the input operation was suc-
cessful. If an input failure occurs, scanf returns the value EOF (defined in <stdio.h>); oth-
erwise, it returns the number of items that were read. If this value does 7ot match the
number you intended to read, then scanf was unable to complete the input operation.

Consider the following statement from Fig. 3.6:

scanf(, &grade); // read grade from user

which expects to read one int value. If the user enters an integer, scanf returns 1 indicat-
ing that one value was indeed read. If the user enters a string, such as "he110", scanf re-

4.13 Secure C Programming 175

turns 0 indicating that it was unable to read the input as an integer. In this case, the
variable grade does 7ot receive a value.
Function scanf can read multdple inputs, as in

scanf(, &numberl, &number2); // read two integers

If the input is successful, scanf will return 2, indicating that two values were read. If the
user enters a string for the first value, scanf will return 0 and neither numberl nor number2
will receive a value. If the user enters an integer followed by a string, scanf will return 1
and only numberl will receive a value.

< Error-Prevention Tip 4.10

a To make your input processing more robust, check scanf’s return value to ensure that the
number of inputs read matches the number of inputs expected. Otherwise, your program
will use the values of the variables as if scanf completed successfully. This could lead to
logic errors, program crashes or even attacks.

Range Checking

Even if a scanf operates successfully, the values read might still be 7nvalid. For example,
grades are typically integers in the range 0-100. In a program that inputs such grades, you
should validate the grades by using range checking to ensure that they are values from 0
to 100. You can then ask the user to reenter any value that’s out of range. If a program
requires inputs from a specific set of values (e.g., nonsequential product codes), you can
ensure that each input matches a value in the set. For more information, see Chapter 5,

“Integer Security,” of Robert Seacord’s book Secure Coding in C and C++, 2/e.

Summary

Section 4.2 Iteration Essentials
* Most programs involve iteration, or looping. A loop is a group of instructions the computer ex-
ecutes repeatedly while some loop-continuation condition (p. 146) remains true.

* Counter-controlled iteration is sometimes called definite iteration (p. 146) because we know in
advance exactly how many times the loop will execute.

* Sentinel-controlled iteration is sometimes called indefinite iteration (p. 146) because it’s not
known in advance how many times the loop will execute; the loop includes statements that ob-
tain data each time the loop is performed.

* In counter-controlled iteration, a control variable (p. 146) is used to count the number of itera-
tions. The control variable is incremented (or decremented) each time the group of instructions
is performed (p. 147). When the correct number of iterations has been performed, the loop ter-
minates, and the program resumes execution with the statement after the iteration statement.

* The sentinel value indicates “end of data.” The sentinel is entered after all regular data items have
been supplied to the program. Sentinels must be distinct from regular data items.

Section 4.3 Counter-Controlled Iteration

* Counter-controlled iteration requires the name (p. 147) of a control variable (or loop counter),
the initial value (p. 147) of the control variable, the increment (or decrement) by which the con-
trol variable is modified each time through the loop, and the condition that tests for the final
value (p. 147) of the control variable (i.e., whether looping should continue).

176 Chapter4 C Program Control

Section 4.4 for Iteration Statement

The for iteration statement handles all the details of counter-controlled iteration.

When the for statement begins executing, its control variable is initialized. Then, the loop-con-
tinuation condition is checked. If the condition is true, the loop’s body executes. The control
variable is then incremented, and the loop begins again with the loop-continuation condition.
This process continues until the loop-continuation condition fails.

The general format of the for statement is

for (initialization; condition; increment) {
statements

}

where the initialization expression initializes (and possibly defines) the control variable, the con-
dition expression is the loop-continuation condition, and the increment expression increments
the control variable.

The comma operator (p. 150) guarantees that lists of expressions evaluate from left to right. The
value of the entire expression is that of the rightmost expression.

The three expressions in the for statement are optional. If the condition expression is omitted, C
assumes that the condition is true, thus creating an infinite loop. One might omit the initializa-
tion expression if the control variable is initialized before the loop. The increment expression
might be omitted if the increment is calculated by statements in the for statement’s body or if
no increment is needed.

The increment expression in the for statement acts like a standalone C statement at the end of
the body of the for.

The two semicolons in the for statement are required.

Section 4.5 for Statement: Notes and Observations

The initialization, loop-continuation condition and increment can contain arithmetic expressions.

The “increment” may be negative (in which case it’s really a decrement and the loop actually
counts downward).

If the loop-continuation condition is initially false, the body portion of the loop isn’t performed.
Instead, execution proceeds with the statement following the for statement.

Section 4.6 Examples Using the for Statement

Function pow (p. 154) performs exponentiation. The function pow(x, y) calculates the value of
x raised to the yth power. It takes two arguments of type double and returns a double value.

Type doube is a floating-point type much like float, but typically a variable of type double can
store a value of much greater magnitude with greater precision than float.

The header <math.h> (p. 154) should be included whenever a math function such as pow is used.

The conversion specifier %21.2f denotes that a floating-point value will be displayed right justi-
fied in a field of 21 characters with two digits to the right of the decimal point.

To left justify a value in a field, place a - (minus sign) between the % and the field width.

Section 4.7 switch Multiple-Selection Statement

Occasionally, an algorithm will contain a series of decisions in which a variable or expression is
tested separately for each of the constant integral values it may assume, and different actions are
taken. This is called multiple selection. C provides the switch statement to handle this.

The switch statement consists of a series of case labels (p. 159), an optional default case and
statements to execute for each case.

Summary 177

¢ The getchar function (from the standard input/output library) reads and returns as an int one
character from the keyboard.

* Characters are normally stored in variables of type char (p. 157). Characters can be stored in any
integer data type because they’re usually represented as one-byte integers in the computer. Thus,
we can treat a character as either an integer or a character, depending on its use.

* Many computers today use the ASCII (American Standard Code for Information Interchange;
p. 158) character set in which 97 represents the lowercase letter 'a".

¢ Characters can be read with scanf by using the conversion specifier %c.

* Assignment expressions as a whole actually have a value. This value is assigned to the variable
on the left side of the =.

¢ The fact that assignment statements have values can be useful for setting several variables to the
same value, asina = b = c = 0;.

* EOF is often used as a sentinel value. EOF is a symbolic integer constant defined in <stdio.h>.

* On Linux/UNIX systems and many others, the EOF indicator is entered by typing <Cerl> 4. On
other systems, such as Microsoft Windows, the EOF indicator can be entered by typing <Ctrl> z.

* Keyword switch is followed by the controlling expression (p. 159) in parentheses. The value of
this expression is compared with each of the case labels. If a match occurs, the statements for
that case execute. If no match occurs, the default case executes.

* The break statement causes program control to continue with the statement after the switch.
The break statement prevents the cases in a switch statement from running together.

¢ Each case can have one or more actions. The switch statement is different from all other control
statements in that braces are not required around multiple actions in a case of a switch.

* Listing several case labels together simply means that the same set of actions is to occur for any
of these cases.

* Remember that the switch statement can be used only for testing a constant integral expression
(p. 161)—i.e., any combination of character constants and integer constants that evaluates to a
constant integer value. A character constant can be represented as the specific character in single
quotes, such as 'A'. Characters must be enclosed within single quotes to be recognized as char-
acter constants. Integer constants are simply integer values.

* In addition to integer types int and char, C provides types short int (which can be abbreviated as
short) and Tong int (which can be abbreviated as Tong), as well as unsigned versions of all the in-
tegral types. The C standard specifies the minimum value range for each type, but the actual range
may be greater, depending on the implementation. For short ints the minimum range is 32767
to +32767. The minimum range of values for Tong ints is —2147483647 to +2147483647. The
range of values for an int is greater than or equal to that of a short int and less than or equal to
that of a Tong int. On many of today’s platforms, ints and Tong ints represent the same range of
values. The data type signed char can be used to represent integers in the range —127 to +127 or
any of the characters in the computer’s character set. See Section 5.2.4.2 of the C standard docu-
ment for the complete list of signed and unsigned integer-type ranges.

Section 4.8 do...while Iteration Statement

* The do...while statement tests the loop-continuation condition affer the loop body is per-
formed. Therefore, the loop body executes at least once. When a do...while terminates, execu-
tion continues with the statement after the while clause.

Section 4.9 break and continue Statements
¢ The break statement, when executed in awhile, for, do...while or switch statement, causes im-
mediate exit from that statement. Program execution continues with the next statement.

178 Chapter4 C Program Control

The continue statement, when executed in a while, for or do...while statement, skips the re-
maining statements in the body and performs the next loop iteration. In while and do...whiTe,
the loop-continuation test is evaluated immediately after the continue statement is executed. In
a for, the increment expression is executed, then the loop-continuation test is evaluated.

Section 4.10 Logical Operators

Logical operators may be used to form complex conditions by combining simple conditions. The
logical operators are & (logical AND), || (logical OR) and ! (logical NOT, or logical negation).

A condition containing the && (logical AND; p. 164) operator is true if and only if both of the
simple conditions are true.

C evaluates all expressions that include relational operators, equality operators, and/or logical op-
erators to 0 or 1. Although C sets a true value to 1, it accepts any nonzero value as true.

A condition containing the | | (logical OR; p. 164) operator is true if either or both of the simple
conditions are true.

The && operator has a higher precedence than | |. Both operators associate from left to right.
An expression containing & or | | operators is evaluated only until truth or falsehood is known.

C provides the ! (logical negation; p. 164) operator to enable you to “reverse” the meaning of a
condition. Unlike the binary operators & and | |, which combine two conditions, the unary log-
ical negation operator has only a single condition as an operand.

The logical negation operator is placed before a condition when we’re interested in choosing a
path of execution if the original condition (without the logical negation operator) is false.

In most cases, you can avoid using logical negation by expressing the condition differently with
an appropriate relational operator.

Sectzon 4.11 Confusing Equality (==) and Assignment (=) Operators

* Programmers often accidentally swap the operators == (equality) and = (assignment). What
makes these swaps so damaging is that they do not ordinarily cause syntax errors. Rather, state-
ments with these errors ordinarily compile correctly, allowing programs to run to completion
while likely generating incorrect results through runtime logic errors.

You may be inclined to write conditions such as x == 7 with the variable name on the left and the
constant on the right. By reversing these terms so that the constant is on the left and the variable
name is on the right, as in 7 == x, then if you accidentally replace the == operator with =, you’ll
be protected by the compiler. The compiler will treat this as a syntax error, because only a vari-
able name can be placed on the left-hand side of an assignment statement.

Variable names are said to be lvalues (for “left values”; p. 168) because they can be used on the
left side of an assignment operator.

Constants are said to be rvalues (for “right values”; p. 168) because they can be used only on the
right side of an assignment operator. /values can also be used as rvalues, but not vice versa.

Self-Review Exercises

4.1 Fill in the blanks in each of the following statements.
a) Counter-controlled iteration is also known as iteration because it’s known in
advance how many times the loop will be executed.
b) Sentinel-controlled iteration is also known as iteration because it’s not known
in advance how many times the loop will be executed.
c) In counter-controlled iteration, a(n) is used to count the number of times a

group of instructions should be repeated.

4.2

4.3

4.4

d)
e)
f)

Answers to Self-Review Exercises 179

The statement, when executed in an iteration statement, causes the next it-
eration of the loop to be performed immediately.

The statement, when executed in an iteration statement or a switch, causes
an immediate exit from the statement.

The is used to test a particular variable or expression for each of the constant
integral values it may assume.

State whether the following are zrue or false. If the answer is false, explain why.

a)
b)
<)
d)

The default case is required in the switch selection statement.

The break statement is required in the default case of a switch selection statement.
The expression (x > y & a < b) is true if either x > y is true or a < b is true.

An expression containing the | | operator is true if either or both of its operands is true.

Write a statement or a set of statements to accomplish each of the following tasks:

a)
b)
9]
d)

e)

Sum the odd integers between 1 and 99 using a for statement. Use the unsigned integer
variables sum and count.

Print the value 333.546372 in a field width of 15 characters with precisions of 1, 2, 3, 4
and 5. Left justify the output. What are the five values that print?

Calculate the value of 2.5 raised to the power of 3 using the pow function. Print the re-
sult with a precision of 2 in a field width of 10 positions. What is the value that prints?
Print the integers from 1 to 20 using a while loop and the counter variable x. Print only
five integers per line. [Hint: Use the calculation x % 5. When the value of this is 0, print
a newline character, otherwise print a tab character.]

Repeat Exercise 4.3(d) using a for statement.

Find the error in each of the following code segments and explain how to correct it.

a)

b)

<)

d)

X = 13
while (x <= 10);
+4X;
}
for (double y = .1; y != sy += .1 {
printf(, YD
}
switch (n) {
case
puts(DE
case
puts();
break;
default:
puts()3
break;
}
The following code should print the values 1 to 10.

n = 1j

while (n <) {
printf(, N++);
}

Answers to Self-Review Exercises

4.1

a)

definite. b) indefinite. c) control variable or counter. d) continue. e) break. f) switch

selection statement.

180

Chapter4 C Program Control

False. The default case is optional. If no default action is needed, then there’s no need
for a default case.

False. The break statement is used to exit the switch statement. The break statement
is not required in any case.

False. Both of the relational expressions must be true in order for the entire expression
to be true when using the && operator.

True.

unsigned int sum = 0;
for (unsigned int count = 1; count <= 99; count += 2) {
sum += count;
}
printf("%-15.1f\n", 333.546372); // prints 333.5
printf("%-15.2f\n", 333.546372); // prints 333.55
printf("%-15.3f\n", 333.546372); // prints 333.546
printf("%-15.4f\n", 333.546372); // prints 333.5464
printf("%-15.5f\n", 333.546372); // prints 333.54637
printf("'%10.2f\n", pow(2.5, 3)); // prints 15.63
unsigned int x = 1;
while (x <= 20) {
printf("%d", x);
if X% 5 ==0) {

puts("");
}
else {
printf("%s", "\t");
}
++X;
}
or

unsigned int x = 1;
while (x <= 20) {
if X% 5 ==0) {
printf("%u\n", Xx++);

}
else {
printf("%u\t", Xx++);
}
}
or

unsigned int x = 0;
while (++x <= 20) {
if (x %5 ==0) {
printf("%u\n", x);

}
else {

printf("%u\t", x);
}

Exercises 181

e) for (unsigned int x = 1; x <= ;o++x) {
printf(, X);
if (x %5 ==0) {
puts (")
}
else {
printf(s Uk
}
}
or
for (unsigned int x = 1; x <= ;o++x) {
if (x %5 ==0){
printf(, X);
}
else {
printf(, X);
}
}
4.4 a) Error: The semicolon after the while header causes an infinite loop.

Correction: Replace the semicolon with a { or remove both the ; and the }.
b) Error: Using a floating-point number to control a for iteration statement.
Correction: Use an integer, and perform the proper calculation to get the values you de-

sire.
for (inty =1; y I= ;oY) {
printf(, (float) y / 10);
}

¢) Error: Missing break statement in the statements for the first case.
Correction: Add a break statement at the end of the statements for the first case. This
is not necessarily an error if you want the statement of case 2: to execute every time the
case 1: statement executes.

d) Error: Improper relational operator used in the while iteration-continuation condition.
Correction: Use <= rather than <.

Exercises
4.5 Find the error in each of the following. (Noze: There may be more than one error.)
a) for (a =25, a<=1, a--); {
printf(, a);
3

b) The following code should print whether a given integer is odd or even:

switch (value) {

case (value % 2 == 0):
puts(DL

case (value % 1= 0):
puts(i

182 Chapter4 C Program Control
¢) The following code should calculate incremented salary after 10 years:
for (int year = 1; year <= ; ++year) {
double salary += salary * ;
}
printf(, year, salary);
d) for (double y = ;y 1= Dy 4=)
printf(s Y
e) The following code should output all multiples of 3 from 1 to 100:
for (int x = 3; x <= ; X%3 == 0; x++) {
printf(, X);
}
) x=1;
while (x <=) {
printf(, X);
}
g) The following code should sum the squares of all numbers from 1 to 50 (assume sum is
initialized to 0):
for (x = 1; x == 50; ++x) {
sum =+ X * X;
}
4.6 State which values of the control variable x are printed by each of the following for
statements:
a) for (x = 20; x >= 3; x —= 3) {
printf(, X);
}
b)for(x:;x<= ; X +=5) {
printf(, X);
}
c) for (x = 2; x <= 205 x += 4) {
printf(, X);
}
d)for(x: ;X >= ; X —= 6) {
printf(, X);
}
e) for (x = 22; x >=2; x —=5) {
printf(, X);
}
4.7 Write for statements that print the following sequences of values:

a) 1,3,5,7,9,11,13

b) 2,5,8,11, 14,17

¢ 30,20, 10, 0,-10, -20, -30
d) 15,23, 31, 39,47, 55

Exercises 183

4.8 What does the following program do?

#include <stdio.h>

1

2 int main(void)

3 {

4 int x, i, j;

5 // prompt user for input

6 printf(s);
7 scanf(, &); // read values for x

8 for (i = 1; i <= x; i++) { // count from 1 to x

9 for (j = 1; j <= x; j++) { // count from 1 to x
10 if (==1)

11 printf(,); // output @

12 else

13 printf();

14 } // end inner for

15 printf();

16 } // end outer for

17 } // end of main

4.9 (Sum and Average of Integers) Write a program to sum a sequence of integers and calcu-

late their average. Assume that the first integer read with scanf specifies the number of values to
be entered. Your program should read only one value each time scanf is executed. A typical input
sequence might be

7 678 234 315 489 536 456 367

where the 7 indicates that the subsequent 7 values are to be summed.

4.10 (Conversion Celsius to Fahrenheit) Write a program that converts temperatures from 30°C
to 50°C to the Fahrenheit scale. The program should print a table displaying temperatures in the

two scales side by side. [Hint: °F = gC + 32]

4.11 (Calculating the Sum of Multiples) Write a program to calculate and print the sum of all
multiples of 7 from 1 to 100.

4.12 (Prime Numbers) Write a program to calculate and print a list of all prime numbers from
1 to 100.

4.13 (Natural Numbers Arithmetic) Write a program that prints the sum, the sum of the
squares, and the sum of the cubes of all natural numbers from 1 till any number entered by the user.

4.14 (Factorials) The factorial function is used frequently in probability problems. The factorial
of a positive integer 7 (written 7! and pronounced “z factorial”) is equal to the product of the posi-
tive integers from 1 to 7. Write a program that evaluates the factorials of the integers from 1 to 5.
Print the results in tabular format. What difficulty might prevent you from calculating the factorial
of 202

4.15 (Modified Compound-Interest Program) Modify the compound-interest program of
Section 4.6 to repeat its steps for interest rates of 5%, 6%, 7%, 8%, 9%, and 10%. Use a for loop
to vary the interest rate.

4.16 (Triangle-Printing Program) Write a program that prints the following patterns separately,
one below the other. Use for loops to generate the patterns. All asterisks (¥) should be printed by a

184 Chapter4 C Program Control

single printf statement of the form printf("%s", "*"); (this causes the asterisks to print side by
side). [Hint: The last two patterns require that each line begin with an appropriate number of

blanks.]

®

(©)]

4.17 (Caleulating Credit Limits) Collecting money becomes increasingly difficult during peri-
ods of recession, so companies may tighten their credit limits to prevent their accounts receivable
(money owed to them) from becoming too large. In response to a prolonged recession, one company
has cut its customers’ credit limits in half. Thus, if a particular customer had a credit limit of $2000,
it’'s now $1000. If a customer had a credit limit of $5000, it’s now $2500. Write a program that
analyzes the credit status of three customers of this company. For each customer you’re given:

a) The customer’s account number.

b) The customer’s credit limit before the recession.

¢) The customer’s current balance (i.e., the amount the customer owes the company).

Your program should calculate and print the new credit limit for each customer and should

determine (and print) which customers have current balances that exceed their new credit limits.

4.18 (Bar-Chart Printing Program) One interesting application of computers is drawing graphs
and bar charts. Write a program that reads five numbers (each between 1 and 30). For each number
read, your program should print a line containing that number of adjacent asterisks. For example,
if your program reads the number seven, it should print * e

4.19 (Calculating Sales) An online retailer sells five different products whose retail prices are
shown in the following table:

Product number Retail price

1 $2.98
2 $ 4.50
3 $9.98
4 $4.49
5 $6.87

Write a program that reads a series of pairs of numbers as follows:
a) Product number
b) Quantity sold for one day

Your program should use a switch statement to help determine the retail price for each product.
Your program should calculate and display the total retail value of all products sold last week.

Exercises 185

4.20 (Truth Tables) Complete the following truth tables by filling in each blank with 0 or 1.

Condition| Condition2 Condition| && Condition2

0 0 0

0 nonzero 0
nonzero 0 -
nonzero nonzero

Condition| Condition2 Condition| | | Condition2

0 0 0

0 nonzero 1

nonzero 0

nonzero nonzero
Condition| I Condition|
0 1
nonzero

4.21 (ASCII Values) Write a program to convert and print the characters for the ASCII values
0 to 127. The program should print 10 characters per line.

4.22 (Average Grade) Modify the program of Fig. 4.7 so that it calculates the average grade for
the class.

4.23 (Calculating the Compound Interest with Integers) Modify the program of Fig. 4.6 so that
it uses only integers to calculate the compound interest. [Hinz: Treat all monetary amounts as inte-
gral numbers of pennies. Then “break” the result into its dollar portion and cents portion by using
the division and remainder operations, respectively. Insert a period.]

4.24 Assumed = 5,j = 7,k = 4and m = -2. What does each of the following statements print?
a) printf("%d", i == 5);
b) printf('%d", jl= 3);
c) printf("%d", i >=5 && j < 4);
d) printf("%d", 'm && k > m);
e) printf("%d", 'k || m);
f) printf("%d", k - m <3 [| 5 -3 >=k);
g) printf("%d", j + m <= i && 10);
h) printf('%d”, 1(j - m);
1) printf("%d", 1k > m));
P oprintfC'%d”, 1G> K);

4.25 (Table of Decimal, Binary, Octal and Hexadecimal Equivalents) Write a program that
prints a table of the binary, octal and hexadecimal equivalents of the decimal numbers in the range

186 Chapter4 C Program Control

1 through 256. If you’re not familiar with these number systems, read Appendix C before you at-
tempt this exercise. [Noze: You can display an integer as an octal or hexadecimal value with the con-
version specifiers %o and %X, respectively.]

4.26 (Calculating the Value of) Calculate the value of T from the infinite series
4 4 4 4 4

e

+
3 5 7 9 11

Print a table that shows the value of T approximated by one term of this series, by two terms, by
three terms, and so on. How many terms of this series do you have to use before you first get 3.14?

3.1412 3.1415? 3.141592

4.27 (Pythagorean Triples) A right triangle can have sides that are all integers. The set of three
integer values for the sides of a right triangle is called a Pythagorean triple. These three sides must
satisfy the relationship that the sum of the squares of two of the sides is equal to the square of the
hypotenuse. Find all Pythagorean triples for sidel, side2, and the hypotenuse all no larger than 500.
Use a triple-nested for loop that simply tries all possibilities. This is an example of “brute-force”
computing. It’s not aesthetically pleasing to many people. But there are many reasons why these
techniques are important. First, with computing power increasing at such a phenomenal pace, so-
lutions that would have taken years or even centuries of computer time to produce with the tech-
nology of just a few years ago can now be produced in hours, minutes or even seconds. Recent
microprocessor chips can process a billion instructions per second! Second, as you'll learn in more
advanced computer science courses, there are large numbers of interesting problems for which
there’s no known algorithmic approach other than sheer brute force. We investigate many kinds of
problem-solving methodologies in this book. We'll consider many brute-force approaches to vari-
ous interesting problems.

m=4

4.28 (Calculating Weekly Pay) A company pays its employees as managers (who receive a fixed
weekly salary), hourly workers (who receive a fixed hourly wage for up to the first 40 hours they
work and “time-and-a-half”—i.e., 1.5 times their hourly wage—for overtime hours worked), com-
mission workers (who receive $250 plus 5.7% of their gross weekly sales), or pieceworkers (who re-
ceive a fixed amount of money for each of the items they produce—each pieceworker in this
company works on only one type of item). Write a program to compute the weekly pay for each
employee. You do not know the number of employees in advance. Each type of employee has its
own pay code: Managers have paycode 1, hourly workers have code 2, commission workers have
code 3 and pieceworkers have code 4. Use a switch to compute each employee’s pay based on that
employee’s paycode. Within the switch, prompt the user (i.e., the payroll clerk) to enter the appro-
priate facts your program needs to calculate each employee’s pay based on that employee’s paycode.
[Note: You can input values of type double using the conversion specifier %1f with scanf.]

4.29 (De Morgan’s Laws) In this chapter, we discussed the logical operators &&, ||, and !. De
Morgan’s Laws can sometimes make it more convenient for us to express a logical expression. These
laws state that the expression ! (conditionl && condition2) is logically equivalent to the expression
(!conditionl || \condition2). Also, the expression ! (conditionl || condition2) is logically equivalent
to the expression (! conditionl && |condition2). Use De Morgan’s Laws to write equivalent expres-
sions for each of the following, and then write a program to show that both the original expression
and the new expression in each case are equivalent.

a) !(x <5 & I(y >= 7)

b) !a==b) Il (g !=5)

) 1((x <= 8) & (y > 4))

d) 1G> 11 G <=6

4.30 (Replacing switch with if...else) Rewrite the program of Fig. 4.7 by replacing the switch
statement with a nested i f...e1se statement; be careful to deal with the default case properly. Then

Exercises 187

rewrite this new version by replacing the nested 1f...el1se statement with a series of 1 statements;
here, too, be careful to deal with the default case properly (this is more difficult than in the nested
if...else version). This exercise demonstrates that switch is a convenience and that any switch
statement can be written with only single-selection statements.

4.31 (Diamond-Printing Program) Write a program that prints the following diamond shape.
You may use printf statements that print either a single asterisk (*) or a single blank. Maximize
your use of iteration (with nested for statements) and minimize the number of printf statements.

ke

Fedkded

4.32 (Modified Diamond-Printing Program) Modify the program you wrote in Exercise 4.31 to
read an odd number in the range 1 to 19 to specify the number of rows in the diamond. Your pro-
gram should then display a diamond of the appropriate size.

4.33 (Roman-Numeral Equivalent of Decimal Values) Write a program that prints a table of all
the Roman-numeral equivalents of the decimal numbers in the range 1 to 100.

4.34 Describe the process you would use to replace a do...while loop with an equivalent while
loop. What problem occurs when you try to replace a while loop with an equivalent do...while
loop? Suppose you’ve been told that you must remove a while loop and replace it with a do...whiTe.
What additional control statement would you need to use and how would you use it to ensure that
the resulting program behaves exactly as the original?

4.35 A criticism of the break statement and the continue statement is that each is unstructured.
Actually, break statements and continue statements can always be replaced by structured state-
ments, although doing so can be awkward. Describe in general how you would remove any break
statement from a loop in a program and replace that statement with some structured equivalent.
[Hint: The break statement leaves a loop from within the body of the loop. The other way to leave
is by failing the loop-continuation test. Consider using in the loop-continuation test a second test
that indicates “early exit because of a ‘break’ condition.”] Use the technique you developed here to
remove the break statement from the program of Fig. 4.11.

4.36 What does the following program segment do?

1 int n =4, a =1;

2 int i, c;

3 for (i = 1; 1 <=n; i++) {
4

5 for (c = 1; c <=1; c++) {
6

7 printf(, a);

8 a++;

9 }

0 printf()3

|

4.37 Describe in general how you would remove any continue statement from a loop in a pro-
gram and replace that statement with some structured equivalent. Use the technique you developed
here to remove the continue statement from the program of Fig. 4.12.

188 Chapter4 C Program Control

4.38 (“The Twelve Days of Christmas” Song) Write a program that uses iteration and switch
statements to print the song “The Twelve Days of Christmas.” One switch statement should be
used to print the day (i.e., “first,” “second,” etc.). A separate switch statement should be used to
print the remainder of each verse.

4.39 (Limitations of Floating-Point Numbers for Monetary Amounts) Section 4.6 cautioned
about using floating-point values for monetary calculations. Try this experiment: Create a float
variable with the value 1000000.00. Next add to that variable the literal float value 0.12f. Display
the result using printf and the conversion specifier "%.2f". What do you get?

Making a Difference

4.40 (World Population Growth) World population has grown considerably over the centuries.
Continued growth could eventually challenge the limits of breathable air, drinkable water, arable
cropland and other limited resources. There’s evidence that growth has been slowing in recent years
and that world population could peak some time this century, then start to decline.

For this exercise, research world population growth issues online. Be sure to investigate various
viewpoints. Get estimates for the current world population and its growth rate (the percentage by
which it’s likely to increase this year). Write a program that calculates world population growth
each year for the next 75 years, using the simplifying assumption that the current growth rate will stay
constant. Print the results in a table. The first column should display the year from year 1 to year
75. The second column should display the anticipated world population at the end of that year.
The third column should display the numerical increase in the world population that would occur
that year. Using your results, determine the year in which the population would be double what it
is today, if this year’s growth rate were to persist.

4.41 (Tax Plan Alternatives; The “Fairlax”) There are many proposals to make taxation fairer.
Check out the FairTax initiative in the United States at

www. fairtax.org

Research how the proposed FairTax works. One suggestion is to eliminate income taxes and most
other taxes in favor of a 23% consumption tax on all products and services that you buy. Some
FairTax opponents question the 23% figure and say that because of the way the tax is calculated, it
would be more accurate to say the rate is 30%—check this carefully. Write a program that prompts
the user to enter expenses in various categories (e.g., housing, food, clothing, transportation, edu-
cation, health care, vacations), then prints the estimated FairTax that person would pay.

C Functions

Objectives
In this chapter, you'll:

m Construct programs
modularly from small pieces
called functions.

= Use common math functions
in the C standard library.

m Create new functions.

m Use the mechanisms that
pass information between
functions.

m Learn how the function call/
return mechanism is
supported by the function
call stack and stack frames.

m Use simulation techniques
based on random number
generation.

m Write and use functions that
call themselves.

4

7 Qutlin

- |

190 Chapter 5 C Functions

5.1 Introduction 5.10 Random Number Generation

wn

5.2 Modularizing Programs in C .1l Example: A Game of Chance;

5.3 Math Library Functions Introducing enum

5.4 Functions .12 Storage Classes

5.5 Function Definitions .13 Scope Rules

5.5.1 square Function
5.52 maximum Function

5.6 Function Prototypes: A Deeper Look
5.7 Function Call Stack and Stack Frames 16 Recursion vs. lteration
5.8 Headers 5.17

.14 Recursion

“u Lt L1

.15 Example Using Recursion: Fibonacci
Series

wn

Secure C Programming
5.9 Passing Arguments By Value and By

Reference

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

5.1 Introduction

Most computer programs that solve real-world problems are much larger than the pro-
grams presented in the first few chapters. Experience has shown that the best way to de-
velop and maintain a large program is to construct it from smaller pieces, each of which is
more manageable than the original program. This technique is called divide and conquer.
This chapter describes some key features of the C language that facilitate the design, im-
plementation, operation and maintenance of large programs.

5.2 Modularizing Programs in C

In C, functions are used to modularize programs. Programs are typically written by com-
bining new functions you write with prepackaged functions available in the C standard li-
brary. We discuss both kinds of functions in this chapter. The C standard library provides
a rich collection of functions for performing common mathematical calculations, string ma-
nipulations, character manipulations, input/output, and many other useful operations. This
makes your job easier, because these functions provide many of the capabilities you need.

5 Good Programming Practice 5.1
} Familiarize yourself with the rich collection of functions in the C standard library.

» Software Engineering Observation 5.1

Avoid reinventing the wheel. When possible, use C standard library functions instead of
) writing new functions. This can reduce program development time. These functions are
written by experts, well-tested and efficient.

- Portability Tip 5.1
'y Using the functions in the C standard library helps make programs more portable.

5.3 Math Library Functions 191

The C language and the standard library are bozh specified by the C standard, and
they're both provided with standard C systems (with the exception that some of the
libraries are designated as optional). The functions printf, scanf and pow that we’ve used
in previous chapters are standard library functions.

You can write functions to define specific tasks that may be used at many points in a
program. These are sometimes referred to as programmer-defined functions. The actual
statements defining the function are written only once, and the statements are hidden
from other functions.

Functions are invoked by a function call, which specifies the function name and pro-
vides information (as arguments) that the function needs to perform its designated task. A
common analogy for this is the hierarchical form of management. A boss (the calling func-
tion or caller) asks a worker (the called function) to perform a task and report back when
the task is done (Fig. 5.1). For example, a function needing to display information on the
screen calls the worker function printf to perform that task, then printf displays the
information and reports back—or returns—to the calling function when its task is com-
pleted. The boss function does 7ot know how the worker function performs its designated
tasks. The worker may call other worker functions, and the boss will be unaware of this.
We'll soon see how this “hiding” of implementation details promotes good software engi-
neering. Figure 5.1 shows a boss function communicating with several worker functions
in a hierarchical manner. Note that Workerl acts as a boss function to Worker4 and
Workers. Relationships among functions may differ from the hierarchical structure shown
in this figure.

Boss
Workerl Worker2 Worker3
Worker4 Worker5

Fig. 5.1 | Hierarchical boss-function/worker-function relationship.

5.3 Math Library Functions

Math library functions allow you to perform certain common mathematical calculations.
We use some of them here to introduce the concept of functions. Later in the book, we’ll
discuss many of the other functions in the C standard library.

Functions are normally used in a program by writing the name of the function
followed by a left parenthesis followed by the argument (or a comma-separated list of
arguments) of the function followed by a right parenthesis. For example, to calculate and
print the square root of 900.0 you might write

printf(, sqrt());

192 Chapter 5 C Functions

When this statement executes, the math library function sqrt is called to calculate the
square root of the number contained in the parentheses (900.0). The number 900.0 is the
argument of the sqrt function. The preceding statement would print 30.00. The sqrt
function takes an argument of type double and returns a result of type double. All func-
tions in the math library that return floating-point values return the data type doubTe. Note
that double values, like float values, can be output using the %f conversion specification.
You may also store a function call’s result in a variable for later use as in:

double result = sqrt(900.0);
Error-Prevention Tip 5.1

Include the math header by using the preprocessor directive #include <math.h> when
using functions in the math library.

Function arguments may be constants, variables, or expressions. If 1 =13.0,d=3.0
and f = 4.0, then the statement
printf("%.2f", sqrt(cl + d * f));

calculates and prints the square root of 13.0 + 3.0 * 4.0 = 25.0, namely 5.00.

Figure 5.2 summarizes a small sample of the C math library functions. In the figure,
the variables x and y are of type double. The C11 standard adds a wide range of floating-
point and complex-number capabilities.

sqrt(x) square root of x sqrt(200.0) is 30.0
sqrt(9.0) is 3.0
cbhrt(x) cube root of x (C99 and C11 only) cbrt(27.0) is 3.0
cbrt(-2.0) is -2.0
exp(x) exponential function ¢* exp(1.0) is 2.718282
exp(2.0) is 7.389056
Tog(x) natural logarithm of x (base ¢) Tog(2.718282) is 1.0
Tog(7.389056) is 2.0
T0g10(x) logarithm of x (base 10) 10g10(1.0) is 0.0

10g10(10.0) is 1.0
10g10(100.0) is 2.0

fabs (x) absolute value of x as a floating-point num- fabs(13.5) is 13.5
ber fabs(0.0) is 0.0
fabs(-13.5) is 13.5
ceil(x) rounds x to the smallest integer not less ceil(9.2) is 10.0
than x ceil(-9.8) is -9.0
floor(x) rounds x to the largest integer not greater floor(9.2) is 9.0
than x floor(-9.8) is -10.0
pow (X, Yy) x raised to power y (x*) pow(2, 7) is 128.0

pow(9, .5)is3.0

Fig. 5.2 | Commonly used math library functions. (Part | of 2.)

5.4 Functions 193

fmod(x, y) remainder of x/y as a floating-point number fmod(13.657, 2.333) is 1.992
sin(x) trigonometric sine of x (x in radians) sin(0.0) is 0.0
cos (x) trigonometric cosine of x (x in radians) cos(0.0) is1.0
tan (x) trigonometric tangent of x (x in radians) tan(0.0) is 0.0

Fig. 5.2 | Commonly used math library functions. (Part 2 of 2.)

5.4 Functions

Functions allow you to modularize a program. All variables defined in function definitions
are local variables—they can be accessed on/y in the function in which they’re defined.
Most functions have a list of parameters that provide the means for communicating infor-
mation between functions via arguments in function calls. A function’s parameters are also
local variables of that function.

+= Software Engineering Observation 5.2
® [n programs containing many functions, main is often implemented as a group of calls to

[functions that perform the bulk of the program’s work.

There are several motivations for “functionalizing” a program. The divide-and-con-
quer approach makes program development more manageable. Another motivation is
software reusability—using existing functions as building blocks to create new programs.
Software reusability is a major factor in the object-oriented programming movement that
you’ll learn more about when you study languages derived from C, such as C++, Objec-
tive-C, Java, C# (pronounced “C sharp”) and Swift. With good function naming and def-
inition, programs can be created from standardized functions that accomplish specific
tasks, rather than being built by using customized code. This is known as abstraction. We
use abstraction each time we use standard library functions like printf, scanf and pow. A
third motivation is to avoid repeating code in a program. Packaging code as a function
allows it to be executed from other locations in a program simply by calling the function.

+= Software Engineering Observation 5.3
® Lach function should be limited to performing a single, well-defined task, and the function
name should express that task. This facilitates abstraction and promotes software reusability.

~= Software Engineering Observation 5.4

® [fyou cannot choose a concise name that expresses what the function does, it’s possible that
your function is attempting to perform too many diverse tasks. It’s usually best to break
such a function into smaller functions—this is sometimes called decomposition.

5.5 Function Definitions

Each program we’ve presented has consisted of a function called main that called standard
library functions to accomplish its tasks. We now consider how to write custom functions.

194 Chapter 5 C Functions

5.5.1 square Function

Consider a program that uses a function square to calculate and print the squares of the
integers from 1 to 10 (Fig. 5.3).

// Fig. 5.3: fig05_03.c

1

2 // Creating and using a programmer-defined function.
3 #include <stdio.h>

4

5 1int square(int y); // function prototype

6

7 dint main(void)

8 {

9 // Toop 10 times and calculate and output square of x each time
10 for (int x = 1; X <= 10; ++x) {

11 printf("%d ", square(x)); // function call

12 }

13

14 puts("");

15 1}

16

17 // square function definition returns the square of its parameter
18 1int square(int y) // y is a copy of the argument to the function
19 {

20 return y * y; // returns the square of y as an int

21 }

1 4 9 16 25 36 49 64 81 100

Fig. 5.3 | Creating and using a programmer-defined function.

Calling Function square
Function square is invoked or called in main within the printf statement (line 11)

printf("%d ", square(x)); // function call

Function square receives a copy of the argument x’s value in the parametery (line 18). Then
square calculates y * y and passes the result back to line 11 in main where square was in-
voked (line 11). Line 11 continues by passing the square result to function printf, which
displays the result on the screen. This process repeats 10 times—once for each iteration of
the for statement.

square Function Definition

The definition of function square (lines 18-21) shows that square expects an integer pa-
rameter y. The keyword int preceding the function name (line 18) indicates that square
returns an integer result. The return statement in square passes the value of the expres-
sion y * y (that is, the result of the calculation) back to the calling function.

square Function Prototype
Line 5

int square(int y); // function prototype

5.5 Function Definitions 195

is a function prototype (also called a function declaration). The int in parentheses in-
forms the compiler that square expects to receive an integer value from the caller. The int
to the /eff of the function name square informs the compiler that square rezurns an integer
result to the caller. The compiler compares the calls to square (line 11) to the function
prototype to ensure that:

* the number of arguments is correct,

e the arguments are of the correct type,

* the argument types are in the correct order, and

* the return type is consistent with the context in which the function is called.

Function prototypes are discussed in detail in Section 5.6.

Format of a Function Definition
The format of a function definition is

return-value-type function-name(parameter-list)

Statements

}

The function-name is any valid identifier. The return-value-type is the data type of the re-
sult returned to the caller. The return-value-type void indicates that a function does not
return a value. Together, the rezurn-value-type, function-name and parameter-list are some-
times referred to as the function header.

<= Error-Prevention Tip 5.2

Check that your functions that are supposed to return values do so. Check that your func-
tions that are not supposed to return values do not.

The parameter-list is a comma-separated list that specifies the parameters received by
the function when it’s called. If a function does 7ot receive any values, parameter-list is
void. A type must be listed explicitly for each parameter.

Spefzﬁ/z'ng ﬁmctz‘on parameters 0f the same type as double x, y instead 0f double x, dou-
\ ble y results in a compilation error.

E ? Common Programming Error 5.1

Plzlcing a semicolon after the right parmt/ye:is enclosing the parameter list of a function
\ definition is a syntax error.

a? Common Programming Error 5.2

Redefining a parameter as a local variable in a function is a compilation error.

E ? Common Programming Error 5.3

: Good Programming Practice 5.2
) Although it’s not incorrect to do so, do not use the same names for a function’s arguments
NS and the corresponding parameters in the function definition. This helps avoid ambiguity.

196 Chapter 5 C Functions

Function Body
The statements within braces form the function body, which is also a élock. Variables can
be declared in any block, and blocks can be nested (but functions connot be nested).

Common Programming Error 5.4
Defining a function inside another function is a syntax error.

Good Programming Practice 5.3

Choosing meaningful function names and meaningful parameter names makes programs
more readable and helps avoid excessive use of comments.

Software Engineering Observation 5.5
Small functions promote software reusabilizy.

Software Engineering Observation 5.6

Programs should be written as collections of small functions. This makes programs easier
to write, debug, maintain and modify.

Software Engineering Observation 5.7

A function requiring a large number of parameters may be performing too many tasks.
Consider dividing the function into smaller functions that pe;form the separate tasks. The
Jfunction header should fit on one line if possible.

Software Engineering Observation 5.8
The function prototype, function header and function calls should all agree in the number,
type, and order of arguments and, parameters, and in the type of return value.

Returning Control from a Function

There are three ways to return control from a called function to the point at which a func-
tion was invoked. If the function does 7oz return a result, control is returned simply when
the function-ending right brace is reached, or by executing the statement

return;
If the function does return a result, the statement
return expression;
returns the value of expression to the caller.
main’s Return Type

Notice that main has an int return type. The return value of main is used to indicate
whether the program executed correctly. In earlier versions of C, we’d explicitly place

return 0;

at the end of main—o0 indicates that a program ran successfully. The C standard indicates
that main implicitly returns 0 if you to omit the preceding statement—as we’ve done
throughout this book. You can explicitly return non-zero values from main to indicate that

5.5 Function Definitions 197

a problem occured during your program’s execution. For information on how to report a
program failure, see the documentation for your particular operating-system environment.

5.5.2 maximum Function

Our second example uses a programmer-defined function maximum to determine and re-
turn the largest of three integers (Fig. 5.4). The integers are input with scanf (line 14).
Next, they’re passed to maximum (line 18), which determines the largest integer. This value
is returned to main by the return statement in maximum (line 35). The printf statement
in line 18 then prints the value returned by maximum.

VoO~NONUND WN -

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36

// Fig. 5.4: fig05_04.c
// Finding the maximum of three integers.
#include <stdio.h>

int maximum(int x, int y, int z); // function prototype

int main(void)

{
int numberl; // first integer entered by the user
int number2; // second integer entered by the user
int number3; // third integer entered by the user

printf("%s", "Enter three integers: ");
scanf ("%d%d%d", &numberl, &number2, &number3);

// numberl, number2 and number3 are arguments
// to the maximum function call
printf("Maximum is: %d\n", maximum(numberl, number2, number3));

}

// Function maximum definition
// X, y and z are parameters

int maximum(int x, int y, int z)
{

int max = x; // assume x is largest

if (y > max) { // if y is larger than max,
max = y; // assign y to max

}

if (z > max) { // if z is Tlarger than max,
max = z; // assign z to max

}

return max; // max is largest value

Enter three integers: 22 85 17
Maximum is: 85

Fig. 5.4 | Finding the maximum of three integers. (Part | of 2.)

198 Chapter 5 C Functions

Enter three integers: 47 32 14
Maximum is: 47

Enter three integers: 35 8 79
Maximum is: 79

Fig. 5.4 | Finding the maximum of three integers. (Part 2 of 2.)

The function initially assumes that its first argument (stored in the parameter x) is the
largest and assigns it to max (line 25). Next, the if statement at lines 27-29 determines
whether y is greater than max and, if so, assigns y to max. Then, the if statement at lines
31-33 determines whether z is greater than max and, if so, assigns z to max. Finally, line
35 returns max to the caller.

5.6 Function Prototypes: A Deeper Look

An important C feature is the function prototype, which was borrowed from C++. The com-
piler uses function prototypes to validate function calls. Pre-standard C did 7o perform this
kind of checking, so it was possible to call functions improperly without the compiler detect-
ing the errors. Such calls could result in fatal execution-time errors or nonfatal errors that
caused subtle, difficult-to-detect problems. Function prototypes correct this deficiency.

Include function prototypes for all functions to take advantage of C's type-checking ca-
NS pabilities. Use #include preprocessor directives to obtain function prototypes for the stan-
dard library functions from the headers for the appropriate libraries, or to obtain headers
containing function prototypes for functions developed by you and/or your group members.

, } Good Programming Practice 5.4

The function prototype for maximum in Fig. 5.4 (line 5) is
int maximum(int x, int y, 1int z); // function prototype

It states that maximum takes three arguments of type int and returns a result of type int.
Notice that the function prototype is the same as the first line of maximum’s definition.

Include parameter names in function prototypes for documentation purposes. The compil-
er ignores these names, so the prototype int maximum(int, int, int); is valid.

} Good Programming Practice 5.5

s, Common Programming Error 5.5
| Forgetting the semicolon at the end of a function prototype is a syntax error.

Compilation Errors

A function call that does not match the function prototype is a compilation error. An error
is also generated if the function prototype and the function definition disagree. For exam-
ple, in Fig. 5.4, if the function prototype had been written

void maximum(int x, int y, 1int z);

5.6 Function Prototypes: A Deeper Look 199

the compiler would generate an error because the void return type in the function proto-
type would differ from the int return type in the function header.

Argument Coercion and “Usual Arithmetic Conversion Rules”

Another important feature of function prototypes is the coercion of arguments, i.e., the
forcing of arguments to the appropriate type. For example, the math library function sqrt
can be called with an integer argument even though the function prototype in <math.h>
specifies a double parameter, and the function will still work correctly. The statement

printf("%.3f\n", sqrt(4));

correctly evaluates sqrt(4) and prints the 2.000. The function prototype causes the compil-
er to convert a copy of the int value 4 to the doubTe value 4.0 before the copy is passed to
sqrt. In general, argument values that do not correspond precisely to the parameter types in the
Jfunction prototype are converted to the proper type before the function is called. These conversions
can lead to incorrect results if C’s usual arithmetic conversion rules are not followed. These
specify how values can be converted to other types without losing data. In our sqrt example,
an int is automatically converted to a double without changing its value (because double
can represent a much larger range of values than int). However, a double converted to an
int truncates the double’s fractional part, thus changing the original value. Converting large
integer types to small integer types (e.g., Tong to short) can also result in changed values.

The usual arithmetic conversion rules automatically apply to expressions containing
values of two data types (also referred to as mixed-type expressions), and are handled by
the compiler. In a mixed-type expression, the compiler makes a temporary copy of the
value that needs to be converted, then converts the copy to the “highest” type in the expres-
sion—this is known as promotion. The usual arithmetic conversion rules for a mixed-type
expression containing at least one floating-point value are:

e If one of the values is a Tong doubTe, the other is converted to a Tong double.
¢ If one of the values is a double, the other is converted to a doubTe.
¢ If one of the values is a float, the other is converted to a float.

If the mixed-type expression contains only integer types, then the usual arichmetic conver-
sions specify a set of integer promotion rules. In most cases, the integer types lower in
Fig. 5.5 are converted to types higher in the figure. Section 6.3.1 of the C standard doc-
ument specifies the complete details of arithmetic operands and the usual arithmetic con-
version rules. Figure 5.5 lists the floating-point and integer data types with each type’s
printf and scanf conversion specifications.

printf conversion scanf conversion
Data type specification specification
Floating-point types
long double %LT %LT
double %f %1t
float %f %f

Fig. 5.5 | Arithmetic data types and their conversion specifications. (Part | of 2.)

200 Chapter 5 C Functions

printf conversion scanf conversion
Data type specification specification
Integer types
unsigned long Tong int %11u %11u
long long int %11d %11d
unsigned long 1int %1u %1u
long int %1d %1d
unsigned int %u %u
int %d %d
unsigned short %hu %hu
short %hd %hd
char %c %cC

Fig. 5.5 | Arithmetic data types and their conversion specifications. (Part 2 of 2.)

A value can be converted to a lower type only by explicitly assigning the value to a vari-
able of lower type or by using a cast operator. Arguments in a function call are converted
to the parameter types specified in a function prototype as if the arguments were being
assigned directly to variables of those types. If our square function that uses an int param-
eter (Fig. 5.3) is called with a floating-point argument, the argument is converted to int
(a lower type), and square usually returns an incorrect value. For example, square(4.5)
returns 16, not 20.25.

Common Programming Error 5.6
Converting from a higher data type in the promotion hierarchy to a lower type can change
the data value. Many compilers issue warnings in such cases.

If there’s no function prototype for a function, the compiler forms its own function
prototype using the first occurrence of the function—either the function definition or a
call to the function. This typically leads to warnings or errors, depending on the compiler.

_ Error-Prevention Tip 5.3
% Always include function prototypes for the functions you define or use in your program to
help prevent compilation errors and warnings.

Software Engineering Observation 5.9

A function prototype placed outside any function definition applies to all calls to the
function appearing after the function prototype in the file. A function prototype placed in
a function body applies only to calls made in that function.

5.7 Function Call Stack and Stack Frames

To understand how C performs function calls, we first need to consider a data structure
(i.e., collection of related data items) known as a stack. Think of a stack as analogous to a

5.7 Function Call Stack and Stack Frames 201

pile of dishes. When a dish is placed on the pile, it’s normally placed at the rop (referred to
as pushing the dish onto the stack). Similarly, when a dish is removed from the pile, ic’s
normally removed from the zop (referred to as popping the dish off the stack). Stacks are
known as last-in, first-out (LIFO) data structures—the /ast item pushed (inserted) on the
stack is the firsz item popped (removed) from the stack.

An important mechanism for computer science students to understand is the function
call stack (sometimes referred to as the program execution stack). This data structure—
working “behind the scenes”—supports the function call/return mechanism. It also sup-
ports the creation, maintenance and destruction of each called function’s local variables
(also called automatic variables). We explained the last-in, first-out (LIFO) behavior of
stacks with our dish-stacking example. As we'll see in Figs. 5.7-5.9, this LIFO behavior is
exactly what a function does when returning to the function that called it.

As each function is called, it may call other functions, which may call other func-
tions—all before any function returns. Each function eventually must return control to the
function that called it. So, we must keep track of the return addresses that each function
needs to return control to the function that called it. The function call stack is the perfect
data structure for handling this information. Each time a function calls another function,
an entry is pushed onto the stack. This entry, called a stack frame, contains the rerurn
address that the called function needs in order to return to the calling function. Italso con-
tains some additional information we’ll soon discuss. If the called function returns, instead
of calling another function before returning, the stack frame for the function call is popped,
and control transfers to the return address in the popped stack frame.

Each called function a/ways finds the information it needs to return to its caller at the
top of the call stack. And, if a function makes a call to another function, a stack frame for
the new function call is simply pushed onto the call stack. Thus, the return address
required by the newly called function to return to its caller is now located at the zop of the
stack.

The stack frames have another important responsibility. Most functions have local
(automatic) variables—parameters and some or all of their local variables. Automatic vari-
ables need to exist while a function is executing. They need to remain active if the function
makes calls to other functions. But when a called function returns to its caller, the called
function’s automatic variables need to “go away.” The called function’s stack frame is a
perfect place to reserve the memory for automatic variables. That stack frame exists only
as long as the called function is active. When that function returns—and no longer needs
its local automatic variables—its stack frame is popped from the stack, and those local auto-
matic variables are no longer known to the program.

Of course, the amount of memory in a computer is finite, so only a certain amount
of memory can be used to store stack frames on the function call stack. If more function
calls occur than can have their stack frames stored on the function call stack, a fatal error
known as stack overflow occurs.

Function Call Stack in Action

Now let’s consider how the call stack supports the operation of a square function called
by main (lines 813 of Fig. 5.6). First the operating system calls main—this pushes a stack
frame onto the stack (shown in Fig. 5.7). The stack frame tells main how to return to the

202 Chapter 5 C Functions

operating system (i.e., transfer to return address R1) and contains the space for main’s au-
tomatic variable (i.e., a, which is initialized to 10).

1 // Fig. 5.6: fig05_06.c

2 // Demonstrating the function call stack

3 // and stack frames using a function square.

4 #include <stdio.h>

5

6 1int square(int); // prototype for function square

7

8 dint mainQ

9 {

10 int a = 10; // value to square (local automatic variable in main)
11

12 printf("%d squared: %d\n", a, square(a)); // display a squared
13 1}

14

15 // returns the square of an integer
16 1int square(int x) // x is a local variable

17 {
18 return x * x; // calculate square and return result
19 3}

10 squared: 100

Fig. 5.6 | Demonstrating the function call stack and stack frames using a function square.

Step I: Operating system invokes main to execute application

int mainQ)

Operating system

Return location R1

Function call stack after Step |

Top of stack

Stack frame

for function main
Key

Lines that represent the operating
system executing instructions

Fig. 5.7 | Function call stack after the operating system invokes main to execute the program.

5.7 Function Call Stack and Stack Frames 203

Function main—before returning to the operating system—now calls function
square in line 12 of Fig. 5.6. This causes a stack frame for square (lines 16-19) to be
pushed onto the function call stack (Fig. 5.8). This stack frame contains the return address
that square needs to return to main (i.e., R2) and the memory for square’s automatic vari-

able (i.e., x).

Step 2: main invokes function square to perform calculation

int main(Q)
— int square(int x)
{
int a = 10; {
printf("%d squared: %d\n", return x * x;
Return location R2 a, square(a)); }
! [

Function call stack after Step 2

Top of stack
Return location: R2

Stack frame for Automatic variables:

function square -
X

Return location: R1

Stack frame Automatic variables:

for function main -
a

Fig. 5.8 | Function call stack after main invokes square to perform the calculation.

After square calculates the square of its argument, it needs to return to main—and no
longer needs the memory for its automatic variable x. So the stack is popped—giving
square the return location in main (i.e., R2) and losing square’s automatic variable.
Figure 5.9 shows the function call stack affer square’s stack frame has been popped.

Function main now displays the result of calling square (line 12 in Fig. 5.6). Reaching
the closing right brace of main causes its stack frame to be popped from the stack, gives
main the address it needs to return to the operating system (i.e., R1 in Fig. 5.7) and causes
the memory for main’s automatic variable (i.e., a) to become unavailable.

You’ve now seen how valuable the stack data structure is in implementing a key mech-
anism that supports program execution. Data structures have many important applica-
tions in computer science. We discuss stacks, queues, lists, trees and other data structures
in Chapter 12.

204 Chapter 5 C Functions

Step 3: square returns its result to main

int main()
int square(int x)
{
int a = 10; {
printf("%d squared: %d\n", return x * x;
Return location R2 a, square(a)); }
} A

Function call stack after Step 3

Top of stack

Return location: R1

Stack frame Automatic variables:

for function main -
a

Fig. 5.9 | Function call stack after function square returns to main.

5.8 Headers

Each standard library has a corresponding header containing the function prototypes for
all the functions in that library and definitions of various data types and constants needed
by those functions. Figure 5.10 lists alphabetically some of the standard library headers
that may be included in programs. The C standard includes additional headers. The term
“macros” that’s used several times in Fig. 5.10 is discussed in detail in Chapter 13.

Header Explanation

<assert.h> Contains information for adding diagnostics that aid program debugging.

<ctype. h> Contains function prototypes for functions that test characters for certain
properties, and function prototypes for functions that can be used to convert
lowercase letters to uppercase letters and vice versa.

<errno.h> Defines macros that are useful for reporting error conditions.
<float.h> Contains the floating-point size limits of the system.
<limits.h> Contains the integral size limits of the system.

<locale.h> Contains function prototypes and other information that enables a program to
be modified for the current locale on which it’s running. The notion of locale
enables the computer system to handle different conventions for expressing data
such as dates, times, currency amounts and large numbers throughout the world.

Fig. 5.10 | Some of the standard library headers. (Part | of 2.)

5.9 Passing Arguments By Value and By Reference 205

Header Explanation

<math.h> Contains function prototypes for math library functions.

<setjmp.h> Contains function prototypes for functions that allow bypassing of the usual
function call and return sequence.

<signal.h> Contains function prototypes and macros to handle various conditions that
may arise during program execution.

<stdarg.h> Defines macros for dealing with a list of arguments to a function whose num-
ber and types are unknown.

<stddef.h> Contains common type definitions used by C for performing calculations.

<stdio.h> Contains function prototypes for the standard input/output library functions,
and information used by them.

<std1ib.h> Contains function prototypes for conversions of numbers to text and text to
numbers, memory allocation, random numbers and other utility functions.

<string.h> Contains function prototypes for string-processing functions.

<time.h> Contains function prototypes and types for manipulating the time and date.

Fig. 5.10 | Some of the standard library headers. (Part 2 of 2.)

You can create custom headers. Programmer-defined headers should also use the .h
filename extension. A programmer-defined header can be included by using the #include
preprocessor directive. For example, if the prototype for our square function was located
in the header square.h, we’d include that header in our program by using the following
directive at the top of the program:

#include "square.h"

Section 13.2 presents additional information on including headers, such as why program-
mer-defined headers are enclosed in quotes (") rather than angle brackets (<>).

5.9 Passing Arguments By Value and By Reference

In many programming languages, there are two ways to pass arguments—pass-by-value
and pass-by-reference. When arguments are passed by value, a copy of the argument’s value
is made and passed to the called function. Changes to the copy do nor affect an original
variable’s value in the caller. When an argument is passed by reference, the caller allows the
called function to modify the original variable’s value.

Pass-by-value should be used whenever the called function does not need to modify
the value of the caller’s original variable. This prevents the accidental side effects (variable
modifications) that so greatly hinder the development of correct and reliable software sys-
tems. Pass-by-reference should be used only with #rusted called functions that need to
modify the original variable.

In C, all arguments are passed by value. As we'll see in Chapter 7, C Pointers, it’s pos-
sible to achieve pass-by-reference by using the address operator and the indirection operator.
In Chapter 6, we'll see that array arguments are automatically passed by reference for per-
formance reasons. We'll see in Chapter 7 that this is 7o a contradiction. For now, we
concentrate on pass-by-value.

206 Chapter 5 C Functions

5.10 Random Number Generation

We now take a brief and, hopefully, entertaining diversion into simulation and game play-
ing. In this and the next section, we’ll develop a nicely structured game-playing program
that includes multiple functions. The program uses functions and several of the control
statements we've studied. The element of chance can be introduced into computer applica-
tions by using the C standard library function rand from the <stdlib.h> header.

Obtaining a Random Integer Value

Consider the following statement:
i = randQ;

The rand function generates an integer between 0 and RAND_MAX (a symbolic constant de-
fined in the <std1ib.h> header). Standard C states that the value of RAND_MAX must be at
least 32767, which is the maximum value for a two-byte (i.e., 16-bit) integer. The pro-
grams in this section were tested on Microsoft Visual C++ with a maximum RAND_MAX val-
ue of 32767, and on GNU gcc and Xcode LLVM with a maximum RAND_MAX value of
2147483647. If rand truly produces integers ar random, every number between 0 and
RAND_MAX has an equal chance (or probability) of being chosen each time rand is called.

The range of values produced directly by rand is often different from what’s needed
in a specific application. For example, a program that simulates coin tossing might require
only 0 for “heads” and 1 for “tails.” A dice-rolling program that simulates a six-sided die
would require random integers from 1 to 6.

Rolling a Six-Sided Die
To demonstrate rand, let’s develop a program (Fig. 5.11) to simulate 20 rolls of a six-sided
die and print the value of each roll.

// Fig. 5.11: fig05_11.c

1

2 // Shifted, scaled random integers produced by 1 + rand() % 6.
3 #include <stdio.h>

4 #include <stdlib.h>

5

6 1int main(void)

7 {

8 // loop 20 times

9 for (unsigned int i = 1; i <= ;o ++1) {

10

11 // pick random number from 1 to 6 and output it

12 printf(s + (rand() % 6));

13

14 // if counter is divisible by 5, begin new line of output
15 if (A% 5 =0) {

16 puts('");

17 }

18 }

19 1}

Fig. 5.11 | Shifted, scaled random integers produced by 1 + rand() % 6. (Part | of 2.)

5.10 Random Number Generation 207

NO RO
WN R WU

[e2 o)V,)]
A Ddoou
RN WO

Fig. 5.11 | Shifted, scaled random integers produced by 1 + rand() % 6. (Part 2 of 2.)

The function prototype for function rand is in <std1ib.h>. We use the remainder
operator (%) in conjunction with rand as follows

rand() % 6

to produce integers in the range 0 to 5. This is called scaling. The number 6 is called the
scaling factor. We then shift the range of numbers produced by adding 1 to our previous
result. The output confirms that the results are in the range 1 to 6—the actual random
values chosen might vary by compiler.

Rolling a Six-Sided Die 60,000,000 Times

To show that these numbers occur approximately with equal likelihood, let’s simulate
60,000,000 rolls of a die with the program of Fig. 5.12. Each integer from 1 to 6 should
appear approximately 10,000,000 times.

1 // Fig. 5.12: fig05_12.c

2 // Rolling a six-sided die 60,000,000 times.

3 #include <stdio.h>

4 #include <stdlib.h>

5

6 int main(void)

7 {

8 unsigned int frequencyl = 0; // rolled 1 counter

9 unsigned int frequency2 = 0; // rolled 2 counter

10 unsigned 1int frequency3 = 0; // rolled 3 counter

11 unsigned int frequency4 = 0; // rolled 4 counter

12 unsigned int frequency5 = 0; // rolled 5 counter

13 unsigned int frequency6 = 0; // rolled 6 counter

14

15 // loop 60000000 times and summarize results

16 for (unsigned int roll = 1; roll <= 60000000; ++rol11) {
17 int face = 1 + rand() % 6; // random number from 1 to 6
18

19 // determine face value and increment appropriate counter
20 switch (face) {
21
22 case 1: // rolled 1
23 ++frequencyl;
24 break;
25
26 case 2: // rolled 2
27 ++frequency?2;
28 break;

Fig. 5.12 | Rolling a six-sided die 60,000,000 times. (Part | of 2.)

208 Chapter 5 C Functions

29
30 case 3: // rolled 3
31 ++frequency3;
32 break;
33
34 case 4: // rolled 4
35 ++frequency4;
36 break;
37
38 case 5: // rolled 5
39 ++frequency5;
40 break;
41
42 case 6: // rolled 6
43 ++frequency6;
44 break; // optional
45 }
46 3
47
48 // display results in tabular format
49 printf("%s%13s\n", "Face'", "Frequency');
50 printf("” 1%13u\n", frequencyl);
51 printf (" 2%13u\n"", frequency2);
52 printf (" 3%13u\n"", frequency3);
53 printf(" 4%13u\n", frequency4);
54 printf (" 5%13u\n"", frequency5);
55 printf (" 6%13u\n", frequency6);
56 }
Face Frequency
1 9999294
2 10002929
3 9995360
4 10000409
5 10005206
6 9996802

Fig. 5.12 | Rolling a six-sided die 60,000,000 times. (Part 2 of 2.)

As the program output shows, by scaling and shifting we’ve used the rand function to
realistically simulate the rolling of a six-sided die. Note the use of the %s conversion speci-
fier to print the character strings "Face" and "Frequency" as column headers (line 49).
After we study arrays in Chapter 6, we'll show how to replace this 26-line switch state-
ment elegantly with a single-line statement.

Randomizing the Random Number Generator
Executing the program of Fig. 5.11 again produces

[e 2NNV, o))
NO RO
WNE=OU
R % %
R NWO

5.10 Random Number Generation 209

Notice that exactly the same sequence of values was printed. How can these be random num-
bers? Ironically, this repeatability is an important characteristic of function rand. When de-
bugging a program, this repeatability is essential for proving that corrections to a program
work properly.

Function rand actually generates pseudorandom numbers. Calling rand repeatedly
produces a sequence of numbers that appears to be random. However, the sequence repeats
itself each time the program is executed. Once a program has been thoroughly debugged,
it can be conditioned to produce a difféerent sequence of random numbers for each execu-
tion. This is called randomizing and is accomplished with the standard library function
srand. Function srand takes an unsigned int argument and seeds function rand to pro-
duce a different sequence of random numbers for each execution of the program.

We demonstrate function srand in Fig. 5.13. The conversion specifier %u is used to
read an unsigned int value with scanf. The function prototype for srand is found in
<stdlib.h>.

1 // Fig. 5.13: fig05_13.c
2 // Randomizing the die-rolling program.
3 #include <stdlib.h>
4 #include <stdio.h>
5
6 int main(void)
7 {
8 unsigned int seed; // number used to seed the random number generator
9
10 printf("%s", "Enter seed: ");
11 scanf("%u", &seed); // note %u for unsigned int
12
13 srand(seed); // seed the random number generator
14
15 // loop 10 times
16 for (unsigned int i = 1; i <= 10; ++i) {
17
18 // pick a random number from 1 to 6 and output it
19 printf("%10d", 1 + (rand(Q) % 6));
20
21 // if counter is divisible by 5, begin a new Tine of output
22 if (A% 5 =0) {
23 puts('");
24 }
25 }
26 }
Enter seed: 67
6 1 4 6 2
1 6 1 6 4
Enter seed: 867
2 4 6 1 6
1 1 3 6 2

Fig. 5.13 | Randomizing the die-rolling program. (Part | of 2.)

210 Chapter 5 C Functions

Enter seed: 67
6 1 4 6 2
1 6 1 6 4

Fig. 5.13 | Randomizing the die-rolling program. (Part 2 of 2.)

Let’s run the program several times and observe the results. Notice that a different
sequence of random numbers is obtained each time the program is run, provided that a
different seed is supplied. The first and last outputs use the same seed value, so they show
the same results.

To randomize without entering a seed each time, use a statement like

srand(time());

This causes the computer to read its clock to obtain the value for the seed automatically.
Function time returns the number of seconds that have passed since midnight on January
1, 1970. This value is converted to an unsigned integer and used as the seed to the random
number generator. The function prototype for time is in <time.h>. We'll say more about
NULL in Chapter 7.

Generalized Scaling and Shifting of Random Numbers

The values produced directly by rand are always in the range:
< rand() <
As you know, the following statement simulates rolling a six-sided die:
face = 1 + rand() % 6;

This statement always assigns an integer value (at random) to the variable face in the
range 1 < face < 6. The width of this range (i.e., the number of consecutive integers in
the range) is 6 and the szarting number in the range is 1. Referring to the preceding state-
ment, we see that the width of the range is determined by the number used to scale rand
with the remainder operator (i.c., 6), and the starting number of the range is equal to the
number (i.e., 1) that’s added to rand % 6. We can generalize this result as follows:

n=a+ rand() % b;

where a is the shifting value (which is equal to the firsz number in the desired range of
consecutive integers) and b is the scaling factor (which is equal to the width of the desired
range of consecutive integers). In the exercises, we'll see that it’s possible to choose integers
at random from sets of values other than ranges of consecutive integers.

5.11 Example: A Game of Chance; Introducing enum

One of the most popular games of chance is a dice game known as “craps,” which is played
in casinos and back alleys throughout the world. The rules of the game are straightforward:

A player rolls two dice. Each die has six faces. These faces contain 1, 2, 3, 4, 5, and 6
spots. After the dice have come to rest, the sum of the spots on the two upward faces is

5.11 Example: A Game of Chance; Introducing enum 211

caleulated. If the sum is 7 or 11 on the first throw, the player wins. If the sum is 2, 3,
or 12 on the first throw (called “craps”), the player loses (i.e., the “house” wins). If the
sum is 4, 5, 6, 8, 9, or 10 on the first throw, then that sum becomes the player’s
‘point.” To win, you must continue rolling the dice until you “make your point.” The
player loses by rolling a 7 before making the point.

Figure 5.14 simulates the game of craps and Fig. 5.15 shows several sample executions.

VoOoO~NONUNDL WN -

N = O

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

// Fig. 5.14: fig05_14.c

// Simulating the game of craps.

#include <stdio.h>

#include <stdlib.h>

#include <time.h> // contains prototype for function time

// enumeration constants represent game status
enum Status { CONTINUE, WON, LOST };

int rol1Dice(void); // function prototype

int main(void)

{

// randomize random number generator using current time
srand(time(NULL));

int myPoint; // player must make this point to win
enum Status gameStatus; // can contain CONTINUE, WON, or LOST
int sum = roll1Dice(); // first roll of the dice

// determine game status based on sum of dice
switch(sum) {

// win on first roll

case 7: // 7 is a winner

case 11: // 11 is a winner
gameStatus = WON;
break;

// lose on first roll

case 2: // 2 is a loser

case 3: // 3 is a Tloser

case 12: // 12 is a Tloser
gameStatus = LOST;
break;

// remember point
default:
gameStatus = CONTINUE; // player should keep rolling
myPoint = sum; // remember the point
printf("Point 1is %d\n", myPoint);
break; // optional

Fig. 5.14 | Simulating the game of craps. (Part | of 2.)

212 Chapter 5 C Functions

45 // while game not complete

46 while (CONTINUE == gameStatus) { // player should keep rolling
47 sum = rollDice(); // roll dice again

48

49 // determine game status

50 if (sum == myPoint) { // win by making point
51 gameStatus = WON;

52 }

53 else {

54 if (7 == sum) { // Tlose by rolling 7
55 gameStatus = LOST;

56 }

57 }

58 }

59

60 // display won or Tost message

6l if (WON == gameStatus) { // did player win?
62 puts("Player wins");

63 }

64 else { // player Tlost

65 puts("Player loses');

66 }

67 }

68

69 // roll dice, calculate sum and display results
70 int rollDice(void)

71 {

72 int diel = 1 + (rand() % 6); // pick random diel value

73 int die2 = 1 + (rand() % 6); // pick random die2 value

74

75 // display results of this roll

76 printf("Player rolled %d + %d = %d\n", diel, die2, diel + die2);
77 return diel + die2; // return sum of dice

78 }

Fig. 5.14 | Simulating the game of craps. (Part 2 of 2.)

Player wins on the first roll

Player rolled 5 + 6 = 11
Player wins

Player wins on a subsequent roll

Player rolled 4 + 1 = 5
Point 1is 5

Player rolled 6 + 2 = 8
Player rolled 2 + 1 = 3
Player rolled 3 + 2 = 5

PTlayer wins

Fig. 5.15 | Sample runs for the game of craps. (Part | of 2.)

5.11 Example: A Game of Chance; Introducing enum 213

Player loses on the first roll

Player rolled 1 + 1 = 2
PTlayer loses

Player loses on a subsequent roll

PTlayer rolled 6 + 4 = 10
Point is 10
Player rolled 3 + 4 = 7

Player loses

Fig. 5.15 | Sample runs for the game of craps. (Part 2 of 2.)

In the rules of the game, notice that the player must roll zwo dice on the first roll, and
must do so later on all subsequent rolls. We define a function ro11D1ce to roll the dice and
compute and print their sum. Function rol1Dice is defined once, but it’s called from zwo
places in the program (lines 19 and 47). The function takes no arguments, so we’ve indicated
void in the parameter list (line 70) and in the function prototype. Function ro11Dice does
return the sum of the two dice, so a return type of int is indicated in its function header and
in its function prototype.

Enumerations

The game is reasonably involved. The player may win or lose on the first roll, or may win
or lose on any subsequent roll. Variable gameStatus, defined to be of a new type—enum
Status—stores the current status. Line 8 creates a programmer-defined type called an
enumeration. An enumeration, introduced by the keyword enum, is a set of integer con-
stants represented by identifiers. Enumeration constants help make programs more read-
able and easier to maintain. Values in an enum start with 0 and are incremented by 1. In
line 8, the constant CONTINUE has the value 0, WON has the value 1 and LOST has the value
2. It’s also possible to assign an integer value to each identifier in an enum (see Chapter 10).
The identifiers in an enumeration must be unique, but the values may be duplicated.

= 7o, Common Programming Error 5.7
o d

-

| Assigning a value to an enumeration constant after it has been defined is a syntax error.

Use only uppercase letters in the names of enumeration constants to make these constants
stand out in a program and to indicate that enumeration constants are not variables.

} Good Programming Practice 5.6

When the game is won, either on the first roll or on a subsequent roll, gameStatus is
set to WON. When the game is lost, either on the first roll or on a subsequent roll, game-
Status is set to LOST. Otherwise gameStatus is set to CONTINUE and the game continues.

Game Ends on First Roll

After the first roll, if the game is over, the while statement (lines 46-58) is skipped because
gameStatus is not CONTINUE. The program proceeds to the if...else statement at lines
61-66, which prints "Player wins" if gameStatus is WON and "Player Toses" otherwise.

214 Chapter 5 C Functions

Game Ends on a Subsequent Roll

After the first roll, if the game is 7oz over, then sum is saved in myPoint. Execution proceeds
with the while statement because gameStatus is CONTINUE. Each time through the whiTe,
rol1Dice is called to produce a new sum. If sum matches myPoint, gameStatus is set to WON
to indicate that the player won, the while-test fails, the if...eTse statement prints "Play-
er wins" and execution terminates. If sum is equal to 7 (line 54), gameStatus is set to LOST
to indicate that the player lost, the while-test fails, the i f...e1se statement prints "Player
loses" and execution terminates.

Control Architecture

Note the program’s interesting control architecture. We’ve used two functions—main and
ro11Dice—and the switch, while, nested if...else and nested if statements. In this
chapter’s exercises, we’ll investigate various interesting characteristics of the game of craps.

5.12 Storage Classes

In Chapters 2—4, we used identifiers for variable names. The attributes of variables include
name, type, size and value. In this chapter, we also use identifiers as names for user-defined
functions. Actually, each identifier in a program has other attributes, including storage
class, storage duration, scope and linkage.

C provides the storage class specifiers auto, register,! extern and static.? An
identifier’s storage class determines its storage duration, scope and linkage. An identifier’s
storage duration is the period during which the identifier exists in memory. Some exist
briefly, some are repeatedly created and destroyed, and others exist for the program’s entire
execution. An identifier’s scope is where the identifier can be referenced in a program.
Some can be referenced throughout a program, others from only portions of a program.
An identifier’s linkage determines for a multiple-source-file program whether the identi-
fier is known only in the current source file or in any source file with proper declarations.
This section discusses storage classes and storage duration. Section 5.13 discusses scope.
Chapter 14 discusses identifier linkage and programming with multiple source files.

The storage-class specifiers can be split between automatic storage duration and
static storage duration. Keyword auto is used to declare variables of automatic storage
duration. Variables with automatic storage duration are created when program control
enters the block in which they’re defined; they exist while the block is active, and they’re
destroyed when program control exits the block.

Local Variables

Only variables can have automatic storage duration. A function’s local variables (those de-
clared in the parameter list or function body) normally have automatic storage duration.
Keyword auto explicitly declares variables of automatic storage duration. Local variables
have automatic storage duration by defaulr, so keyword auto is rarely used. For the remain-
der of the text, we'll refer to variables with automatic storage duration simply as automatic
variables.

1. Keyword register is archaic and should not be used.
2. The C11 standard adds the storage class specifier _Thread_local, which is beyond this book’s scope.

5.12 Storage Classes 215

Performance Tip 5.1
- Automatic storage is a means of conserving memory, because automatic variables exist
' only when they’re needed. Theyre created when a function is entered and destroyed when
the function is exited.

Static Storage Class
Keywords extern and static are used in the declarations of identifiers for variables and
functions of szatic storage duration. ldentifiers of static storage duration exist from the time
at which the program begins execution until the program terminates. For static variables,
storage is allocated and initialized only once, before the program begins execution. For func-
tions, the name of the function exists when the program begins execution. However, even
though the variables and the function names exist from the start of program execution, this
does 7ot mean that these identifiers can be accessed throughout the program. Storage du-
ration and scope (where a name can be used) are separate issues, as we'll see in Section 5.13.
There are several types of identifiers with static storage duration: external identifiers
(such as global variables and function names) and local variables declared with the storage-
class specifier static. Global variables and function names are of storage class extern by
default. Global variables are created by placing variable declarations ousside any function
definition, and they retain their values throughout the execution of the program. Global
variables and functions can be referenced by any function that follows their declarations
or definitions in the file. This is one reason for using function prototypes—when we
include stdio.h in a program that calls printf, the function prototype is placed at the
start of our file to make the name printf known to the rest of the file.

Software Engineering Observation 5.10

Defining a variable as global rather than local allows unintended side effects to occur
when a function that does not need access to the variable accidentally or maliciously
modifies it. In general, global variables should be avoided except in certain situations
with unique performance requirements (as discussed in Chapter 14).

ko= Software Engineering Observation 5.11
5 Variables used only in a particular function should be defined as local variables in that
25 [function rather than as external variables.

Local variables declared with the keyword static are still known only in the function
in which they’re defined, but unlike automatic variables, static local variables rezain their
value when the function is exited. The next time the function is called, the static local
variable contains the value it had when the function last exited. The following statement
declares local variable count to be static and initializes it to 1.

static int count = 1;

All numeric variables of static storage duration are initialized to zero by default if you do
not explicitly initialize them.

Keywords extern and static have special meaning when explicitly applied to
external identifiers. In Chapter 14 we discuss the explicit use of extern and static with
external identifiers and multiple-source-file programs.

216 Chapter 5 C Functions

5.13 Scope Rules

The scope of an identifier is the portion of the program in which the identifier can be ref-
erenced. For example, when we define a local variable in a block, it can be referenced only
following its definition in that block or in blocks nested within that block. The four iden-
tifier scopes are function scope, file scope, block scope, and function-prototype scope.

Labels (identifiers followed by a colon such as start:) are the only identifiers with
function scope. Labels can be used anywhere in the function in which they appear, but
cannot be referenced outside the function body. Labels are used in switch statements (as
case labels) and in goto statements (see Chapter 14). Labels are hidden in the function in
which they’re defined. This hiding—more formally called information hiding—is a
means of implementing the principle of least privilege—a fundamental principle of good
software engineering. In the context of an application, the principle states that code should
be granted only the amount of privilege and access that it needs to accomplish its desig-
nated task, but no more.

An identifier declared outside any function has file scope. Such an identifier is
“known” (i.e., accessible) in all functions from the point at which the identifier is declared
until the end of the file. Global variables, function definitions, and function prototypes
placed outside a function all have file scope.

Identifiers defined inside a block have block scope. Block scope ends at the termi-
nating right brace (}) of the block. Local variables defined at the beginning of a function
have block scope, as do function parameters, which are considered local variables by the
function. Any block may contain variable definitions. When blocks are nested, and an iden-
tifier in an outer block has the same name as an identifier in an inner block, the identifier
in the outer block is hidden until the inner block terminates. This means that while exe-
cuting in the inner block, the inner block sees the value of its own local identifier and 7oz
the value of the identically named identifier in the enclosing block. Local variables
declared static still have block scope, even though they exist from before program
startup. Thus, storage duration does 7or affect the scope of an identifier.

The only identifiers with function-prototype scope are those used in the parameter
list of a function prototype. As mentioned previously, function prototypes do 7or require
names in the parameter lis—only zypes are required. If a name is used in the parameter list
of a function prototype, the compiler ignores the name. Identifiers used in a function pro-
totype can be reused elsewhere in the program without ambiguity.

-~z Common Programming Error 5.8
% Accidentally using the same name for an identifier in an inner block as is used for an iden-
- tifier in an outer block, when in fact you want the identifier in the outer block to be active

for the duration of the inner block.

< Error-Prevention Tip 5.4

- Avoid variable names that hide names in outer scopes.

Figure 5.16 demonstrates scoping issues with global variables, automatic local vari-
ables and static local variables. A global variable x is defined and initialized to 1 (line 9).
This global variable is hidden in any block (or function) in which a variable named x is

5.13 Scope Rules 217

defined. In main, a local variable x is defined and initialized to 5 (line 13). This variable is
then printed to show that the global x is hidden in main. Next, a new block is defined in
main with another local variable x initialized to 7 (line 18). This variable is printed to show
that it hides x in the outer block of main. The variable x with value 7 is automatically
destroyed when the block is exited, and the local variable x in the outer block of main is
printed again to show that it’s no longer hidden.

1 // Fig. 5.16: fig05_16.c

2 // Scoping.

3 #include <stdio.h>

4

5 void uselocal(void); // function prototype

6 void useStaticlLocal(void); // function prototype

7 void useGlobal(void); // function prototype

8

9 1int x = 1; // global variable

10

Il 1int main(void)

12 {

13 int x = 5; // local variable to main

14

15 printf("local x in outer scope of main is %d\n", x);
16

17 { // start new scope

18 int x = 7; // local variable to new scope

19
20 printf("local x in inner scope of main is %d\n", x);
21 } // end new scope
22
23 printf("local x in outer scope of main is %d\n", x);
24
25 uselocal(); // uselocal has automatic Tlocal x
26 useStaticLocal(); // useStaticlLocal has static local x
27 useGlobal(); // useGlobal uses global x
28 uselocal(); // uselocal reinitializes automatic local x
29 useStaticLocal(); // static local x retains its prior value
30 useGlobal(); // global x also retains its value
31
32 printf("\nlocal x 1in main 1is %d\n", x);
33 }
34

35 // uselocal reinitializes local variable x during each call
36 void uselocal(void)

37 {

38 int x = 25; // initialized each time uselocal is called

39

40 printf("\nlocal x in uselLocal is %d after entering uselLocal\n", x);
41 ++X;

42 printf("local x in uselLocal 1is %d before exiting uselLocal\n", x);
43 1}

44

Fig. 5.16 | Scoping. (Part | of 2.)

218 Chapter 5 C Functions

45 // useStaticlLocal initializes static Tocal variable x only the first time
46 // the function is called; value of x is saved between calls to this

47 // function

48 void useStaticlocal(void)

49 {

50 // initialized once

51 static int x = 50;

52

53 printf("\nlocal static x is %d on entering useStaticLocal\n", x);
54 ++X;

55 printf("local static x is %d on exiting useStaticLocal\n", x);

56 }

57

58 // function useGlobal modifies global variable x during each call
59 void useGlobal(void)

60 {

6l printf("\nglobal x is %d on entering useGlobal\n", x);
62 X *= 10;

63 printf(''global x is %d on exiting useGlobal\n", x);

64 }

Tocal x in outer scope of main is 5
Tocal x 1in inner scope of main 1is 7
Tocal x in outer scope of main is 5

Tocal x in uselLocal is 25 after entering uselocal
Tocal x 1in uselocal 1is 26 before exiting uselocal

Jocal static x is 50 on entering useStaticlocal
Jocal static x is 51 on exiting useStaticlocal

global x is 1 on entering useGlobal
global x is 10 on exiting useGlobal

Tocal x in uselocal is 25 after entering uselocal
Tocal x in uselLocal is 26 before exiting uselocal

Tocal static x is 51 on entering useStaticlLocal
Tocal static x is 52 on exiting useStaticlocal

global x is 10 on entering useGlobal
global x is 100 on exiting useGlobal

local x in main is 5

Fig. 5.16 | Scoping. (Part 2 of 2.)

The program defines three functions that each take no arguments and return nothing.
Function useLocal defines an automatic variable x and initializes it to 25 (line 38). When
useLocal is called, the variable is printed, incremented, and printed again before exiting the
function. Each time this function is called, the automatic variable x is reinitialized to 25.

Function useStaticlLocal defines a static variable x and initializes it to 50 in line
51 (recall that the storage for static variables is allocated and initialized only once, before
the program begins execution). Local variables declared as static rezain their values even

5.14 Recursion 219

when they’re out of scope. When useStaticLocal is called, x is printed, incremented, and
printed again before exiting the function. In the next call to this function, the static local
variable x will contain the previously incremented value 51.

Function useGlobal does not define any variables. Therefore, when it refers to variable
x, the global x (line 9) is used. When useGlobal is called, the global variable is printed,
muldplied by 10, and printed again before exiting the function. The next time function
useGlobal is called, the global variable still has its modified value, 10. Finally, the program
prints the local variable x in main again (line 32) to show that none of the function calls
modified the value of x because the functions all referred to variables in other scopes.

5.14 Recursion

For some types of problems, it’s useful to have functions call themselves. A recursive func-
tion is one that calls irself either directly or indirectly through another function. Recursion is
a complex topic discussed at length in upper-level computer science courses. In this section
and the next, we present simple examples of recursion. This book contains an extensive treat-
ment of recursion, which is spread throughout Chapters 5-8 and 12 and Appendices D and
E. Figure 5.21, in Section 5.16, summarizes the book’s recursion examples and exercises.

We consider recursion conceptually first, then examine several programs containing
recursive functions. Recursive problem-solving approaches have a number of elements in
common. A recursive function is called to solve a problem. The function actually knows
how to solve only the simplest case(s), or so-called base case(s). If the function is called with
a base case, the function simply returns a result. If the function is called with a more com-
plex problem, the function typically divides the problem into two conceptual pieces: a
piece that the function knows how to do and a piece that it does not know how to do. To
make recursion feasible, the latter piece must resemble the original problem, but be a
slightly simpler or smaller version. Because this new problem looks like the original
problem, the function launches (calls) a fresh copy of itself to work on the smaller
problem—this is referred to as a recursive call or the recursion step. The recursion step
also includes a return statement, because its result will be combined with the portion of
the problem the function knew how to solve to form a result that will be passed back to
the original caller.

The recursion step executes while the original call to the function is paused, waiting
for the result from the recursion step. The recursion step can result in many more such
recursive calls, as the function keeps dividing each problem with which it’s called into two
conceptual pieces. For the recursion to terminate, each time the function calls itself with
a slightly simpler version of the original problem, this sequence of smaller problems must
eventually converge on the base case. When the function recognizes the base case, it returns
a result to the previous copy of the function, and a sequence of returns ensues all the way
up the line until the original call of the function eventually returns the final result to its
caller. As an example of these concepts at work, let’s write a recursive program to perform
a popular mathematical calculation.

Recursively Calculating Factorials
The factorial of a nonnegative integer 7, written 7! (pronounced “z factorial”), is the product

n-n=1)-(n=2)-...-1

220 Chapter 5 C Functions

with 1! equal to 1, and 0! defined to be 1. For example, 5! is the product 5 * 4 *3*2* 1,
which is equal to 120.

The factorial of an integer, number, greater than or equal to 0 can be calculated
iteratively (nonrecursively) using a for statement as follows:

factorial = 1;
for (counter = number; counter >= 1; --counter)
factorial *= counter;

A recursive definition of the factorial function is arrived at by observing the following
relationship:

nl'=n.- (n-1)
For example, 5! is clearly equal to 5 * 4! as shown by the following:
50=5.4.3.2.1

51=5.(4-3-2-1)
51=5.(4)

The evaluation of 5! would proceed as shown in Fig. 5.17. Figure 5.17(a) shows how
the succession of recursive calls proceeds until 1! is evaluated to be 1 (i.e., the base case),
which terminates the recursion. Figure 5.17(b) shows the values returned from each recur-
sive call to its caller until the final value is calculated and returned.

a) Sequence of recursive calls b) Values returned from each recursive call

Final value = 120

51 51
l T 5!=5*24=120is returned
5 % 41 5 % 41
l T 4l=4*6=24is returned
4 * 31 4 % 31
l T 31=3*2==6is returned
3 %21 Sl
l T 2!'=2* | =2is returned
2 * 1! 2 * 1!
l T | is returned
1 1

Fig. 5.17 | Recursive evaluation of 5!.

Figure 5.18 uses recursion to calculate and print the factorials of the integers 0-21
(the choice of the type unsigned Tong Tong int will be explained momentarily).

5.14 Recursion

221

1 // Fig. 5.18: fig05_18.c

2 // Recursive factorial function.

3 #include <stdio.h>

4

5 unsigned long long int factorial(unsigned int number);
6

7 dint main(void)

8 {

9 // during each iteration, calculate

10 // factorial(i) and display result

11 for (unsigned int i = 0; i <= 21; ++i) {

12 printf("%u! = %1Tu\n", i, factorial(i));
13 }

14 %

15

16 // recursive definition of function factorial
17 unsigned long long int factorial(unsigned int number)
18 {

19 // base case

20 if (number <= 1) {
21 return 1;

22

23 else { // recursive step
24 return (number * factorial(number - 1));
25 }

26 }

0! =1

1! =1

21 =2

31 = 6

41 = 24

5! = 120

6! = 720

7! = 5040

8! = 40320

9! = 362880

10! = 3628800

11! = 39916800

12! = 479001600

13! = 6227020800

14! = 87178291200

15! = 1307674368000

16! = 20922789888000

17! = 355687428096000

18! = 6402373705728000

19! = 121645100408832000
20! = 2432902008176640000
21! = 14197454024290336768

Fig. 5.18 | Recursive factorial function.

222 Chapter 5 C Functions

The recursive factorial function first tests whether a terminating condition is true,
i.e., whether number is less than or equal to 1. If number is indeed less than or equal to 1,
factorial returns 1, no further recursion is necessary, and the program terminates. If
number is greater than 1, the statement

return number * factorial(number - 1);

expresses the problem as the product of number and a recursive call to factorial evaluat-
ing the factorial of number - 1. The call factorial(number - 1) is a slightly simpler prob-
lem than the original calculation factorial(number).

Function factorial (lines 17-26) receives an unsigned int and returns a result of
type unsigned Tong Tong int. The C standard specifies that a variable of type unsigned
long Tong int can hold a value at least as large as 18,446,744,073,709,551,615. As can
be seen in Fig. 5.18, factorial values become large quickly. We’ve chosen the data type
unsigned Tong Tong int so the program can calculate larger factorial values. The conver-
sion specifier %17u is used to print unsigned Tong long int values. Unfortunately, the
factorial function produces large values so quickly that even unsigned long Tong int
does not help us print very many factorial values before the maximum value of a unsigned
long Tong int variable is exceeded.

Even when we use unsigned Tong Tong int, we still can’t calculate factorials beyond
21! This points to a weakness in C (and most other procedural programming languages)—
namely that the language is not easily extended to handle the unique requirements of var-
ious applications. As we’ll see later in the book, C++ is an extensible language that, through
“classes,” allows us to create new data types, including ones that could hold arbitrarily large
integers if we wish.

AL Common Programming Error 5.9
.4

= {

| Forgetting to return a value from a recursive function when one is needed.

AL Common Programming Error 5.10
2.4

= {

| Either omitting the base case, or writing the recursion step incorrectly so that it does not
converge on the base case, will cause inﬁm'te recursion, evmtudl[y ex/mmting memory.
This is analogous to the problem of an infinite loop in an iterative (nonrecursive) solution.

5.15 Example Using Recursion: Fibonacci Series

The Fibonacci series
0,1,1,2,3,5,8,13, 21, ...

begins with 0 and 1 and has the property that each subsequent Fibonacci number is the
sum of the previous two Fibonacci numbers.

The series occurs in nature and, in particular, describes a form of spiral. The ratio of
successive Fibonacci numbers converges to a constant value of 1.618.... This number, too,
repeatedly occurs in nature and has been called the golden ratio or the golden mean.
Humans tend to find the golden mean aesthetically pleasing. Architects often design win-
dows, rooms, and buildings whose length and width are in the ratio of the golden mean.
Postcards are often designed with a golden mean length/width ratio.

5.15 Example Using Recursion: Fibonacci Series 223

The Fibonacci series may be defined recursively as follows:

fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(n) = fibonacci(nz — 1) + fibonacci(n — 2)

Figure 5.19 calculates the »™ Fibonacci number recursively using function fibonacci.
Notice that Fibonacci numbers tend to become large quickly. Therefore, we've chosen the
data type unsigned int for the parameter type and the data type unsigned Tong Tong int
for the return type in function fibonacci. In Fig. 5.19, each pair of output lines shows a
separate run of the program.

1 // Fig. 5.19: fig05_19.c

2 // Recursive fibonacci function

3 #include <stdio.h>

4

5 unsigned long long int fibonacci(unsigned int n); // function prototype
6

7 dint main(void)

8 {

9 unsigned int number; // number input by user

10

11 // obtain integer from user

12 printf("%s", "Enter an integer: ");

13 scanf("'%u", &number);

14

15 // calculate fibonacci value for number input by user
16 unsigned long long int result = fibonacci(number);
17

18 // display result

19 printf("Fibonacci(%u) = %1Tu\n", number, result);
20 }
21

22 // Recursive definition of function fibonacci
23 unsigned long long int fibonacci(unsigned int n)

24 {

25 // base case

26 if (0O=n || 1 ==n) {

27 return n;

28 }

29 else { // recursive step

30 return fibonacci(n - 1) + fibonacci(n - 2);
31 }

32}

Enter an integer: 0
Fibonacci(0) = 0

Enter an integer: 1
Fibonacci(1l) = 1

Fig. 5.19 | Recursive fibonacci function. (Part I of 2.)

224 Chapter 5 C Functions

Enter an integer: 2
Fibonacci(2) = 1

Enter an integer: 3
Fibonacci(3) = 2

Enter an integer: 10
Fibonacci(10) = 55

Enter an integer: 20
Fibonacci(20) = 6765

Enter an integer: 30
Fibonacci (30) = 832040

Enter an integer: 40
Fibonacci(40) = 102334155

Fig. 5.19 | Recursive fibonacci function. (Part 2 of 2.)

The call to fibonacci from main is not a recursive call (line 16), but all subsequent
calls to fibonacci are recursive (line 30). Each time fibonacci is invoked, it immediately
tests for the base case—n is equal to 0 or 1. If this is true, n is returned. Interestingly, if n
is greater than 1, the recursion step generates fwo recursive calls, each a slightly simpler
problem than the original call to fibonacci. Figure 5.20 shows how function fibonacci
would evaluate fibonacci (3).

fibonacci (3)

l

return fibonacci (2) + fibonacci (1)
\
return fibonacci (1) + fibonacci (0) return 1
\ \ \ \
return 1 return 0

Fig. 5.20 | Set of recursive calls for fibonacci (3).

5.15 Example Using Recursion: Fibonacci Series 225

Order of Evaluation of Operands

This figure raises some interesting issues about the order in which C compilers will evaluate
the operands of operators. This is a different issue from the order in which operators are
applied to their operands, namely the order dictated by the rules of operator precedence
abd associativity. Figure 5.20 shows that while evaluating fibonacci(3), rwo recursive
calls will be made, namely fibonacci(2) and fibonacci(1). But in what order will these
calls be made? You might simply assume the operands will be evaluated left to right. For
optimization reasons, C does 7oz specify the order in which the operands of most operators
(including +) are to be evaluated. Therefore, you should make no assumption about the
order in which these calls will execute. The calls could execute fibonacci (2) firstand then
fibonacci (1), or the calls could execute in the reverse order, fibonacci (1) then fibo-
nacci (2). In this and most other programs, the final result would be the same. But in
some programs the evaluation of an operand may have side effects that could affect the final
result of the expression.

C specifies the order of evaluation of the operands of only four operators—=&&, | |, the
comma (,) operator and ?:. The first three of these are binary operators whose operands
are guaranteed to be evaluated leff to right. [INote: The commas used to separate the argu-
ments in a function call are 7or comma operators.] The last operator is C’s only rernary
operator. Its leftmost operand is always evaluated firss; if the leftmost operand evaluates to
nonzero (true), the middle operand is evaluated next and the last operand is ignored; if the
leftmost operand evaluates to zero (false), the third operand is evaluated next and the
middle operand is ignored.

i 3 Writing programs that depend on the order of evaluation of the operands of operators oth-
= er than &&, | |, ?:, and the comma (,) operator can lead to errors because compilers may
not necessarily evaluate the operands in the order you expect.

%? Common Programming Error 5.11

- Portability Tip 5.2
Programs that depend on the order of evaluation of the operands of operators other than
e &&, ||, 7, and the comma (,) operator can ﬁmction diﬂérmtly on diﬁ%rmt compilers.

Exponential Complexity

A word of caution is in order about recursive programs like the one we use here to generate
Fibonacci numbers. Each level of recursion in the fibonacci function has a doubling effect
on the number of calls—the number of recursive calls that will be executed to calculate the
' Fibonacci number is on the order of 2”. This rapidly gets out of hand. Calculating only
the 20t Fibonacci number would require on the order of 22° or about a million calls, cal-
culating the 30 Fibonacci number would require on the order of 23° or about a billion
calls, and so on. Computer scientists refer to this as exponential complexity. Problems of this
nature humble even the world’s most powerful computers! Complexity issues in general,
and exponential complexity in particular, are discussed in detail in the upper-level com-
puter science course generally called “Algorithms.”

The example we showed in this section used an intuitively appealing solution to cal-
culate Fibonacci numbers, but there are better approaches. Exercise 5.48 asks you to inves-
tigate recursion in more depth and propose alternate approaches to implementing the
recursive Fibonacci algorithm.

226 Chapter 5 C Functions

5.16 Recursion vs. Iteration

In the previous sections, we studied two functions that can easily be implemented either
recursively or iteratively. In this section, we compare the two approaches and discuss why
you might choose one approach over the other in a particular situation.

¢ Both iteration and recursion are based on a control statement: Iteration uses an iz-
eration statement; recursion uses a selection statement.

* Both iteration and recursion involve repetition: Iteration uses an iteration state-
ment; recursion achieves repetition through repeated function calls.

e TJteration and recursion each involve a termination test: Iteration terminates when
the loop-continuation condition fails; recursion when a base case is recognized.

* Iteration with counter-controlled iteration and recursion each gradually approach
termination: Iteration keeps modifying a counter until the counter assumes a val-
ue that makes the loop-continuation condition fail; recursion keeps producing sim-
pler versions of the original problem until the base case is reached.

* Both iteration and recursion can occur nfinitely: An infinite loop occurs with it-
eration if the loop-continuation test never becomes false; infinite recursion occurs
if the recursion step does 70t reduce the problem each time in a manner that con-
verges on the base case. Infinite iteration and recursion typically occur as a result of
errors in a program’s logic.

Recursion has many negatives. It repeatedly invokes the mechanism, and consequently
the overhead, of function calls. This can be expensive in both processor time and memory
space. Each recursive call causes another copy of the function (actually only the function’s
variables) to be created; this can consume considerable memory. Iteration normally occurs
within a function, so the overhead of repeated function calls and extra memory assignment
is omitted. So why choose recursion?

Software Engineering Observation 5.12

: Any problem that can be solved recursively can also be solved iteratively (nonrecursively).
28 A recursive approach is normally chosen in preference to an iterative approach when the
recursive approach more naturally mirrors the problem and results in a program that’s
easier to understand and debug. Another reason to choose a recursive solution is that an
iterative solution may not be apparent.

Most programming textbooks introduce recursion much later than we’ve done here.
We feel that recursion is a sufficiently rich and complex topic that it’s better to introduce
it earlier and spread the examples over the remainder of the text. Figure 5.21 summarizes
by chapter the 30 recursion examples and exercises in the text.

Let’s close this chapter with some observations that we make repeatedly throughout
the book. Good software engineering is important. High performance is important.
Unfortunately, these goals are often at odds with one another. Good software engineering
is key to making more manageable the task of developing the larger and more complex
software systems we need. High performance is key to realizing the systems of the future
that will place ever greater computing demands on hardware. Where do functions fit in
here?

5.17 Secure C Programming 227

Recursion examples and exercises

Chapter 5 Chapter 7
Factorial function Maze traversal
Fibonacci function Chapter 8

Greatest common divisor L .
. . Printing a string input at the keyboard backward
Multiply two integers

Raising an integer to an integer power Chapter 12

Towers of Hanoi Search a linked list
Recursive main Print a linked list backward
Visualizing recursion Binary tree insert

Preorder traversal of a binary tree
Inorder traversal of a binary tree
Postorder traversal of a binary tree
Printing trees

Chapter 6
Sum the elements of an array
Print an array

Print an array backward

Print a string backward Appendix D
Check whether a string is a palindrome Selection sort
Minimum value in an array Quicksort

Linear search
Binary search

Eight Queens

Appendix E

Fibonacci function

Fig. 5.21 | Recursion examples and exercises in the text.

. Performance Tip 5.2
F a Dividing a large program into functions promotes good software engineering. But it has a
price. A heavily functionalized program—as compared to a monolithic (i.e., one-piece)
program without functions—makes potentially large numbers of function calls, and these
consume execution time on a computer’s processor(s). Although monolithic programs may
perform better, theyre more difficult to program, test, debug, maintain, and evolve.

Performance Tip 5.3

Today’s hardware architectures are tuned to make function calls efficient, C compilers
help optimize your code and today’s hardware processors are incredibly fast. For the vast
majority of applications and software systems you ll build, concentrating on good software
engineering will be more important than programming for high performance. Neverthe-
less, in many C applications and systems, such as game programming, real-time systems,
operating systems and embedded systems, performance is crucial, so we include perfor-
mance tips throughout the book.

5.17 Secure C Programming

Secure Random Numbers

In Section 5.10, we introduced the rand function for generating pseudorandom numbers.
The C standard library does not provide a secure random-number generator. According to
the C standard document’s description of function rand, “There are no guarantees as to the

228 Chapter 5 C Functions

quality of the random sequence produced and some implementations are known to produce
sequences with distressingly non-random low-order bits.” The CERT guideline MSC30-C
indicates that implementation-specific random-number generation functions must be used
to ensure that the random numbers produced are nor predictable—this is extremely impor-
tant, for example, in cryptography and other security applications. The guideline presents
several platform-specific random-number generators that are considered to be secure. For ex-
ample, Microsoft Windows provides the CryptGenRandom function, and POSIX based sys-
tems (such as Linux) provide a random function that produces more secure results. For more
information, see guideline MSC30-C at https://www.securecoding.cert.org. If you're
building industrial-strength applications that require random numbers, you should investi-
gate for your platform the recommended function(s) to use.

Summary

Section 5.1 Introduction
* The best way to develop and maintain a large program is to divide (p. 190) it into several smaller
pieces, each more manageable than the original program.

Section 5.2 Modularizing Programs in C
* A function (p. 190) is invoked by a function call (p. 191). The function call specifies the function
by name and provides information (as arguments) that the called function needs to perform its task.

* The purpose of information hiding is to give functions access only to the information they need
to complete their tasks. This is a means of implementing the principle of least privilege, one of
the most important principles of good software engineering.

Section 5.3 Math Library Functions

* A function is normally invoked in a program by writing the function’s name followed by a left
parenthesis followed by the argument (or a comma-separated list of arguments) of the function
followed by a right parenthesis.

* Each argument of a function may be a constant, a variable, or an expression.

Section 5.4 Functions

* Alocal variable (p. 193) is known only in a function definition. Other functions are not allowed
to know the names of a function’s local variables, nor is any function allowed to know the im-
plementation details of any other function.

Section 5.5 Function Definitions
* The general format for a function definition is

return-value-type function-name(parameter-list)

Statements

3

The return-value-type states the type of the value returned to the calling function. If a function
does not return a value, the return-value-type is declared as void. The function-name is any valid
identifier. The parameter-list (p. 195) is a comma-separated list containing the definitions of the
variables that will be passed to the function. If a function does not receive any values, parameter-
list is declared as void.

Summary 229

* The arguments passed to a function should match in number, type and order with the parame-
ters (p. 193) in the function definition.

* When a program encounters a function call, control transfers from the point of invocation to the
called function, the statements of that function execute then control returns to the caller.

* A called function can return control to the caller in one of three ways. If the function does not
return a value, control is returned when the function-ending right brace is reached, or by execut-
ing the statement

return;
If the function does return a value, the statement

return expression;

returns the value of expression.

Section 5.6 Function Prototypes: A Deeper Look
* A function prototype (p. 195) declares the function’s name, return type and declares the num-
ber, types, and order of the parameters the function expects to receive.

* Function prototypes enable the compiler to verify that functions are called correctly.
¢ The compiler ignores variable names mentioned in the function prototype.

* Arguments in a mixed-type expression (p. 199) are converted to the same type via the C stan-
dard’s usual arithmetic conversion rules (p. 199).

Section 5.7 Function Call Stack and Stack Frames
e Stacks (p. 201) are known as last-in, first-out (LIFO; p. 201) data structures—the last item
pushed (inserted) on the stack is the first item popped (removed) from the stack.

* A called function must know how to return to its caller, so the return address of the calling func-
tion is pushed onto the program execution stack (p. 201) when the function is called. If a series
of function calls occurs, the successive return addresses are pushed onto the stack in last-in, first-
out order so that the last function to execute will be the first to return to its caller.

¢ The program execution stack contains the memory for the local variables used in each invoca-
tion of a function during a program’s execution. This data is known as the stack frame (p. 201)
of the function call. When a function call is made, the stack frame for that function call is pushed
onto the program execution stack. When the function returns to its caller, the stack frame for
this function call is popped off the stack and those local variables are no longer known to the
program.

¢ The amount of memory in a computer is finite, so only a certain amount of memory can be used
to store stack frames on the program execution stack. If there are more function calls than can
have their stack frames stored on the program execution stack, an error known as a stack overflow
occurs. The application will compile correctly, but its execution will fail with a stack overflow.

Section 5.8 Headers

* Each standard library has a corresponding header (p. 204) containing the function prototypes
for all of that library’s functions, and definitions of various symbolic constants needed by those
functions.

* You can create and include your own headers.

Section 5.9 Passing Arguments By Value and By Reference
* When an argument is passed by value (p. 205), a copy of its value is made and passed to the called
function. Changes to the copy in the called function do not affect the original variable’s value.

230 Chapter 5 C Functions

When an argument is passed by reference (p. 205), the caller allows the called function to mod-
ify the original variable’s value.

All calls in C are call-by-value.

It’s possible to achieve call-by-reference by using address operators and indirection operators.

Section 5.10 Random Number Generation

Function rand generates an integer between 0 and RAND_MAX which is defined by the C standard
to be at least 32767.

Values produced by rand can be scaled and shifted to produce values in a specific range (p. 207).
To randomize a program, use the C standard library function srand.

The srand function seeds (p. 209) the random number generator. An srand call is ordinarily in-
serted in a program only after it has been thoroughly debugged. While debugging, it’s better to
omit srand. This ensures repeatability, which is essential to proving that corrections to a random
number generation program work properly.

The function prototypes for rand and srand are contained in <std1ib.h>.
To randomize without the need for entering a seed each time, we use srand(time(NULL)).
The general equation for scaling and shifting a random number is

n=a+ rand() % b;

where a is the shifting value (i.e., the first number in the desired range of consecutive integers)
and b is the scaling factor (i.e,. the width of the desired range of consecutive integers).

Section 5.11 Example: A Game of Chance; Introducing enum

An enumeration (p. 213), introduced by the keyword enum, is a set of integer constants repre-
sented by identifiers. Values in an enum start with 0 and are incremented by 1. It’s also possible
to assign an integer value to each identifier in an enum. The identifiers in an enumeration must
be unique, but the values may be duplicated.

Section 5.12 Storage Classes

Each identifier in a program has the attributes storage class, storage duration, scope and linkage

(p. 214).

C provides four storage classes indicated by the storage class specifiers: auto, register, extern
and static (p. 214).

An identifier’s storage duration is when that identifier exists in memory.

An identifier’s linkage (p. 214) determines for a multiple-source-file program whether an iden-
tifier is known only in the current source file or in any source file with proper declarations.
Variables with automatic storage duration (p. 214) are created when the block in which they’re

defined is entered, exist while the block is active and are destroyed when the block is exited. A
function’s local variables normally have automatic storage duration.

Keywords extern and static are used to declare identifiers for variables and functions of static
storage duration.

Static storage duration (p. 214) variables are allocated and initialized once, before the program
begins execution.

There are two types of identifiers with static storage duration: external identifiers (such as global
variables and function names) and local variables declared with the storage-class specifier static.

Global variables are created by placing variable definitions outside any function definition.
Global variables retain their values throughout the execution of the program.

Summary 231

Local static variables retain their value between calls to the function in which they’re defined.

All numeric variables of static storage duration are initialized to zero if you do not explicitly ini-
tialize them.

Section 5.13 Scope Rules

An identifier’s scope (p. 216) is where the identifier can be referenced in a program.

An identifier can have function scope, file scope, block scope or function-prototype scope

(p. 216).

Labels are the only identifiers with function scope. Labels can be used anywhere in the function
in which they appear but cannot be referenced outside the function body.

An identifier declared outside any function has file scope. Such an identifier is “known” in all
functions from the point at which it’s declared until the end of the file.

Identifiers defined inside a block have block scope. Block scope ends at the terminating right

brace (}) of the block.

Local variables defined at the beginning of a function have block scope, as do function parame-
ters, which are considered local variables by the function.

Any block may contain variable definitions. When blocks are nested, and an identifier in an outer
block has the same name as an identifier in an inner block, the identifier in the outer block is
“hidden” until the inner block terminates.

The only identifiers with function-prototype scope are those used in the parameter list of a func-
tion prototype. Identifiers used in a function prototype can be reused elsewhere in the program
without ambiguity.

Section 5.14 Recursion

A recursive function (p. 219) is a function that calls itself either directly or indirectly.

If a recursive function is called with a base case (p. 219), the function simply returns a result. If
it’s called with a more complex problem, the function divides the problem into two conceptual
pieces: a piece that the function knows how to do and a slightly smaller version of the original
problem. Because this new problem looks like the original problem, the function launches a re-
cursive call to work on the smaller problem.

For recursion to terminate, each time the recursive function calls itself with a slightly simpler ver-
sion of the original problem, the sequence of smaller and smaller problems must converge on the
base case. When the function recognizes the base case, the result is returned to the previous func-
tion call, and a sequence of returns ensues all the way up the line until the original call of the
function eventually returns the final result.

Standard C does not specify the order in which the operands of most operators (including +) are
to be evaluated. Of C’s many operators, the standard specifies the order of evaluation of the op-
erands of only the operators &&, ||, the comma (,) operator and ?:. The first three of these are
binary operators whose two operands are evaluated left to right. The last operator is C’s only ter-
nary operator. Its leftmost operand is evaluated first; if it evaluates to nonzero, the middle oper-
and is evaluated next and the last operand is ignored; if the leftmost operand evaluates to zero,
the third operand is evaluated next and the middle operand is ignored.

Section 5.16 Recursion vs. Iteration

Both iteration and recursion are based on a control structure: Iteration uses an iteration state-
ment; recursion uses a selection statement.

232 Chapter 5 C Functions

* Both iteration and recursion involve repetition: Iteration uses an iteration statement; recursion
achieves repetition through repeated function calls.

* Iteration and recursion each involve a termination test: Iteration terminates when the loop-con-
tinuation condition fails; recursion terminates when a base case is recognized.

* Iteration and recursion can occur infinitely: An infinite loop occurs with iteration if the loop-
continuation test never becomes false; infinite recursion occurs if the recursion step does not re-
duce the problem in a manner that converges on the base case.

* Recursion repeatedly invokes the mechanism, and consequently the overhead, of function calls.
This can be expensive in both processor time and memory space.

Self-Review Exercises

5.1 Answer each of the following:

a)

are used to modularize programs.

b) A function is invoked with a(n)

¢) A variable known only within the function in which it’s defined is called a(n)

d) The statement in a called function is used to pass the value of an expression
back to the calling function.

e) Keyword is used in a function header to indicate that a function does not re-
turn a value or to indicate that a function contains no parameters.

f) The of an identifier is the portion of the program in which the identifier can
be used.

g) The three ways to return control from a called function to a caller are ,

and .

h) A(n) allows the compiler to check the number, types, and order of the argu-
ments passed to a function.

i) The function is used to produce random numbers.

j) The function is used to set the random number seed to randomize a program.

k) The storage-class specifiers are , , and

1) Variables declared in a block or in the parameter list of a function are assumed to be of
storage class unless specified otherwise.

m) A non-static variable defined outside any block or function is a(n) variable.

n) For alocal variable in a function to retain its value between calls to the function, it must
be declared with the storage-class specifier.

0) The four possible scopes of an identifier are , , and

p) A function that calls itself either directly or indirectly is a(n) function.

q) A recursive function typically has two components: one that provides a means for the
recursion to terminate by testing for a(n) case, and one that expresses the
problem as a recursive call for a slightly simpler problem than the original call.

5.2 For the following program, state the scope (either function scope, file scope, block scope or
function-prototype scope) of each of the following elements.

a) The variable x in main.

b) The variable y in cube.

c) The function cube.

d) The function main.

¢) The function prototype for cube.

f) The identifier y in the function prototype for cube.

Self-Review Exercises 233

#include <stdio.h>

|

2 int cube(int y);

3

4 int main(void)

5 {

6 for (int x = 1; x <= 5H+X)
7 printf(, cube(x));
8 1

9

10 int cube(int y)

11 {

12 return y * y * y;

13 }

5.3 Write a program that tests whether the examples of the math library function calls shown
in Fig. 5.2 actually produce the indicated results.

5.4 Give the function header for each of the following functions.

a) Function hypotenuse that takes two double-precision floating-point arguments, sidel
and side2, and returns a double-precision floating-point result.

b) Function smallest that takes three integers, x, y, z, and returns an integer.

¢) Function instructions that does not receive any arguments and does not return a val-
ue. [Note: Such functions are commonly used to display instructions to a user.]

d) Function intToFloat that takes an integer argument, number, and returns a floating-
point result.

5.5 Give the function prototype for each of the following:
a) The function described in Exercise 5.4(a).
b) The function described in Exercise 5.4(b).
c) The function described in Exercise 5.4(c).
d) The function described in Exercise 5.4(d).

5.6 Write a declaration for floating-point variable Tastval that’s to retain its value between calls
to the function in which it’s defined.

5.7 Find the error in each of the following program segments and explain how the error can be
corrected (see also Exercise 5.46):
a) int g(void)

{
printf(y);
int h(void)
{
printf(5);
}
}
b) int sum(int x, dint y)
{
int result = x + y;
}
c) void f(float a);
{
float a;
printf(, a);

234 Chapter 5 C Functions

d) dint sumCint n)

{
if (0 == n) {
return 0; //
}
else {
n + sum(n - 1);
}
}
e) void product(void)
{
printf("%s", "Enter three integers: ")
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
int result = a * b * ¢;
printf("Result is %d", result);
return result;
}

Answers to Self-Review Exercises

5.1 a) functions. b) function call. ¢) local variable. d) return. ¢) void. f) ccope. g) return; or
return expression; or encountering the closing right brace of a function. h) function prototype.
i) rand. j) srand. k) auto, register, extern, static. l) auto. m) external, global. n) static.
o) function scope, file scope, block scope, function-prototype scope. p) recursive. q) base.

5.2 a) Block scope. b) Block scope. c) File scope. d) File scope. e) File scope. f) Function-

prototyp scope.

5.3 See below. [Vote: On most Linux systems, you must use the -1m option when compiling
this program.]

1 // ex05_03.c

2 // Testing the math Tibrary functions

3 #include <stdio.h>

4 #include <math.h>

5

6 1int main(void)

7 {

8 // calculates and outputs the square root

9 printf("sqrt(%.1f) = %.1f\n", 900.0, sqrt(900.0));
10 printf("sqrt(%.1f) = %.1f\n", 9.0, sqrt(9.0));

11

12 // calculates and outputs the cube root

13 printf("cbrt(%.1f) = %.1f\n", 27.0, cbrt(27.0));

14 printf("cbrt(%.1f) = %.1f\n", -8.0, cbrt(-8.0));

15

16 // calculates and outputs the exponential function e to the x
17 printf("exp(%.1f) = %f\n", 1.0, exp(1.0));

18 printf("exp(%.1f) = %f\n", 2.0, exp(2.0));

19
20 // calculates and outputs the logarithm (base e)
21 printf("log(%f) = %.1f\n", 2.718282, log(2.718282));
22 printf("log(%f) = %.1f\n", 7.389056, log(7.389056));

N
w

Answers to Self-Review Exercises

235

24 // calculates and outputs the
25 printf("1og10(%.1f) = %.1f\n",
26 printf("logl0(%.1f) = %.1f\n",
27 printf("1og10(%.1f) = %.1f\n",
28

29 // calculates and outputs the
30 printf("fabs(%.1f) = %.1f\n",
31 printf("fabs(%.1f) = %.1f\n",
32 printf("fabs(%.1f) = %.1f\n",
33

34 // calculates and outputs cei
35 printf("ceil (%.1f) = %.1f\n",
36 printf("ceil (%.1f) = %.1f\n",
37

38 // calculates and outputs flo
39 printf("floor(%.1f) = %.1f\n",
40 printf("floor(%.1f) = %.1f\n",
41

42 // calculates and outputs pow
43 printf("pow(%.1f, %.1f) = %.1
44 printf("pow(%.1f, %.1f) = %.1
45

46 // calculates and outputs fmo
47 printf("fmod(%.3f/%.3F) = %.3
48 fmod(13.657, 2.333));

49

50 // calculates and outputs sin
51 printf("sin(%.1f) = %.1f\n",
52

53 // calculates and outputs cos
54 printf("cos(%.1f) = %.1f\n",
55

56 // calculates and outputs tan
57 printf("tan(%.1f) = %.1f\n",
58 }

logarithm (base 10)
1.0, 10ogl0(1.0));
10.0, Togl0(10.0));
100.0,

absolute value

13.5, fabs(13.5));
0.0, fabs(0.0));
-13.5, fabs(-13.5));

100
9.2, ceil(9.2));
-9.8, ceil(-9.8));

or(x)
9.2, floor(9.2));
-9.8, floor(-9.8));

X, y)

f\n", 2.0, 7.0, pow(2.
f\n", 9.0, 0.5, pow(9.
dx, y)

f\n", 13.657, 2.333,

(€9)
0.0, sin(0.0));

(€3]
0.0, cos(0.0));

(€9)
0.0, tan(0.0));

10910(100.0));

0, 7.0));
0, 0.5));

sqrt(900.0)
sqrt(9.0) =
cbrt(27.0)
cbrt(-8.0)
exp(1.0) = 1
exp(2.0) = 7 38
Tog(2.718282) =
Tog(7. 389056) =
T10og10(1.0)
10g10(10.0) =
10g10(100.0)
fabs(13.5) =
fabs(0.0) = 0.0
fabs(-13.5) = 13.5
ceil(9.2) = 10.0
ceil(-9.8) -9.0
floor(9.2) 9.0
floor(-9.8) = -10.0
pow(2.0, 7.0) = 128.0
pow(9.0, 0.5) =

fmod (13. 657/2 333)
sin(0.0) 0.0
cos(0.0) 1.0
tan(0.0) 0.0

3
8282
9056
1.0
2 0

13 5

1.992

236 Chapter 5 C Functions
5.4 a) double hypotenuse(double sidel, double side2)
b) int smallest(int x, int y, int 2)
c) void instructions(void)
d) float intToFloat(int number)
5.5 a) double hypotenuse(double sidel, double side2);
b) int smallest(int x, int y, int z);
c) void instructions(void);
d) float intToFloat(int number);
5.6 static float lastVal;
5.7 a) Error: Function h is defined in function g.
Correction: Move the definition of h out of the definition of g.
b) Error: The body of the function is supposed to return an integer, but does not.
Correction: Replace the statement in the function body with:
return x + y;
¢) Error: Semicolon after the right parenthesis that encloses the parameter list, and re-
defining the parameter a in the function definition.
Correction: Delete the semicolon after the right parenthesis of the parameter list, and
delete the declaration float a; in the function body.
d) Error: The result of n + sum(n - 1) is not returned; sum returns an improper result.
Correction: Rewrite the statement in the else clause as
return n + sum(n - 1);
e) Error: The function returns a value when it’s not supposed to.
Correction: Eliminate the return statement.
Exercises
5.8 Show the value of X after each of the following statements is performed:
a) x = fabs(h)
b) x = floor()
c) x = fabs()
d) x = ceil()
e) x = fabs(0.0)
f) x = ceil()
g) x = ceil(-fabs(- floor(M)
5.9 (Car Rental Services) A car rental service charges a minimum fee of $25.00 to rent a car for

8 hours, and charges an additional $5 per hour after 8 hours. The maximum charge per day is $50
exclusive of service tax. The company charges an additional $0.50 per hour as service tax. Assume that
no car is rented for more than 72 hours at a time. If a car is rented for more than 24 hours, then rental
is calculated on a daily basis. Write a program that calculates and prints the rental charges for each of
three customers who rented cars from this agency yesterday. You should enter the hours for which the
car has been rented for each customer. Your program should print the results in a neat tabular format
and should calculate and print the total of yesterday’s receipts. The program should use the function
calculateCharges to determine the charges for each customer. Your outputs should appear in the
following format:

Car

1

2

3
TOTAL

Hours Charge
12 56.00
34 117.00
48 124.00
94 297.00

Exercises 237

5.10 (Rounding Numbers) An application of function ceil is rounding a value to the nearest
integer. The statement

y = ceil(x +);

rounds the number x to the nearest integer and assigns the result to y. Write a program that reads
several numbers and uses the preceding statement to round each of these numbers to the nearest
integer. For each number processed, print both the original number and the rounded number.

5.11 (Rounding Numbers) Function floor may be used to round a number to a specific decimal
place. The statement

y = floor(x * 10 + .5) / 10;
rounds x to the tenths position (the first position to the right of the decimal point). The statement
y = floor(x * 100 + .5) / :

rounds x to the hundredths position (the second position to the right of the decimal point). Write
a program that defines four functions to round a number x in various ways

a) roundToInteger (number)

b) roundToTenths(number)

c) roundToHundreths(number)

d) roundToThousandths(number)
For each value read, your program should print the original value, the number rounded to the
nearest integer, the number rounded to the nearest tenth, the number rounded to the nearest hun-
dredth, and the number rounded to the nearest thousandth.

5.12 Answer each of the following questions.
a) What is the difference between passing arguments by arguments and passing arguments
by reference?
b) What values does the rand function generate?
¢) How do you randomize a program? How do you scale or shift the values produced by
the rand function?
d) What is a recursive function? What is a base case?

5.13 Write statements that assign random integers to the variable 7 in the following ranges:
a) 1<#2<6
b) 100 < » < 1000
o 0<»n<19
d) 1000 < n < 2222
e) -1<n<1
) 3<n<l1l

5.14 For each of the following sets of integers, write a single statement that will print a number
at random from the set.

a) 3,6,9,12,15, 18,21, 24, 27, 30.

b) 3,5,7,9,11,13,15,17,19.

c) 3,8,13,18,23,28,33

5.15 (Hypotenuse Calculations) Define a function called hypotenuse that calculates the length
of the hypotenuse of a right triangle when the other two sides are given. The function should take
two arguments of type double and return the hypotenuse as a double. Test your program with the
side values specified in Fig. 5.22.

5.16 (Sides of a Triangle) Write a function that reads three nonzero double values as the sides of a
triangle, and calculates and returns the area of the triangle as a double variable. It should also check
whether the numbers represent the sides of a triangle before calculating the area. Use this function in
a program that inputs a series of sets of numbers.

238 Chapter 5 C Functions

Triangle Side | Side 2
1 3.0 4.0

2 5.0 12.0
3 8.0 15.0

Fig. 5.22 | Sample triangle side values for Exercise 5.15.

5.17 (Sides of a Right Triangle) Write a function that reads three nonzero integers and deter-
mines whether they are the sides of a right-angled triangle. The function should take three integer
arguments and return 1 (true) if the arguments comprise a right-angled triangle, and 0 (false) oth-
erwise. Use this function in a program that inputs a series of sets of integers.

5.18 (Even or Odd) Write a program that inputs a series of integers and passes them one at a time
to function isEven, which uses the remainder operator to determine whether an integer is even. The
function should take an integer argument and return 1 if the integer is even and 0 otherwise.

5.19 (Rectangle of Asterisks) Write a function that displays a solid rectangle of asterisks whose
sides are specified in the integer parameters sidel and side2. For example, if the sides are 4 and 5,
the function displays the following

Fdededed
ke

Fedededed

5.20 (Displaying a Rectangle of Any Character) Modify the function created in Exercise 5.19 to
form the rectangle out of whatever character is contained in character parameter fi11Character. Thus
if the sides are 5 and 4, and fi11Character is "@", then the function should print the following:

@@ea
@@e@
e
@@ea
0@e@

5.21 (Project: Drawing Shapes with Characters) Use techniques similar to those developed in
Exercises 5.19-5.20 to produce a program that graphs a wide range of shapes.

5.22 (Separating Digits) Write program segments that accomplish each of the following:
a) Calculate the integer part of the quotient when integer a is divided by integer b.
b) Calculate the integer remainder when integer a is divided by integer b.
¢) Use the program pieces developed in a) and b) to write a function that inputs an integer
between 1 and 32767 and prints it as a series of digits,with two spaces between each digit.
For example, the integer 4562 should be printed as:

5.23 (Time in Seconds) Write a function that takes the time as three integer arguments (for
hours, minutes, and seconds) and returns the number of seconds since the last time the clock “struck
12.” Use this function to calculate the amount of time in seconds between two times, both of which
are within one 12-hour cycle of the clock.

Exercises 239

5.24 (Currency Conversion) Implement the following double functions:
a) Function toYen takes an amount in US dollars and returns the Yen equivalent.
b) Function toEuro takes an amount in US dollars and return the Euro equivalent
¢) Use these functions to write a program that prints charts showing the Yen and Euro
equivalents of a range of dollar amounts. Print the outputs in a neat tabular format. Use
an exchange rate of 1 USD = 118.87 Yen and 1 USD = 0.92 Euro.

5.25 (Find the Maximum) Write a function that returns the largest of four floating-point numbers.

5.26 (Perfect Numbers) An integer number is said to be a perfect number if its factors, including
1 (but not the number itself), sum to the number. For example, 6 is a perfect number because 6 =
1 + 2 + 3. Write a function isPerfect that determines whether parameter number is a perfect num-
ber. Use this function in a program that determines and prints all the perfect numbers between 1
and 1000. Print the factors of each perfect number to confirm that the number is indeed perfect.
Challenge the power of your computer by testing numbers much larger than 1000.

5.27 (Roots of a Quadratic Equation) A quadratic equation is any equation of the form
ax® + bx + ¢ = 0 where a, b, and ¢ are the coefficients of x. The roots of a quadratic equation can be
—b+ /b2 —4ac
2a
discriminant, is positive then the equation has real roots. If the discriminant is negative, the equa-
tion has imaginary (or complex) roots. Write a function that accepts the coefficients of an equation
as parameters, checks if the roots are real, and calculates the roots of the equation. Write a program
to test this function.

calculated by the formula x = . If the expression, b* — 4ac, which is also called the

5.28 (Sum of Digits) Write a function that takes an integer and returns the sum of its digits. For
example, given the number 7631, the function should return 17.

5.29 (Lowest Common Multiple) The lowest common multiple (LCM) of two integers is the small-
est positive integer that is a multiple of both numbers. Write a function Tem that returns the lowest
common multiple of two numbers.

5.30 (Quality Points for Student’s Grades) Write a function toQualityPoints that inputs a stu-
dent’s average and returns 4 it’s 90-100, 3 if it’s 80-89, 2 if it’s 70-79, 1 if it’s 60-69, and 0 if the
average is lower than 60.

5.31 (Coin Tossing) Write a program that simulates coin tossing. For each toss of the coin the
program should print Heads or Tai1s. Let the program toss the coin 100 times, and count the num-
ber of times each side of the coin appears. Print the results. The program should call a separate func-
tion f1ip that takes no arguments and returns 0 for tails and 1 for heads. [Noze: If the program
realistically simulates the coin tossing, then each side of the coin should appear approximately half
the time for a total of approximately 50 heads and 50 tails.]

5.32 (Guess the Number) Write a C program that plays the game of “guess the number” as fol-
lows: Your program chooses the number to be guessed by selecting an integer at random in the range
1 to 1000. The program then types:

I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.

240 Chapter 5 C Functions

The player then types a first guess. The program responds with one of the following:

1. Excellent! You guessed the number!

w N

Would you 1ike to play again (y or n)?
. Too Tow. Try again.
. Too high. Try again.

If the player’s guess is incorrect, your program should loop until the player finally gets the number
right. Your program should keep telling the player Too high or Too Tow to help the player “zero in”
on the correct answer. [Note: The searching technique employed in this problem is called binary
search. We'll say more about this in the next problem.]

5.33 (Guess the Number Modification) Modify the program of Exercise 5.32 to count the num-
ber of guesses the player makes. If the number is 10 or fewer, print Either you know the secret or
you got Tucky! If the player guesses the number in 10 tries, then print Ahah! You know the secret!
If the player makes more than 10 guesses, then print You should be able to do better! Why should
it take no more than 10 guesses? Well, with each “good guess” the player should be able to eliminate
half of the numbers. Now show why any number 1 to 1000 can be guessed in 10 or fewer tries.

5.34 (Recursive Exponentiation) Write a recursive function power(base, exponent) that when
invoked returns

baseexponent

For example, power(3, 4) = 3 * 3 * 3 * 3. Assume that exponent is an integer greater than or equal
to 1. Hint: The recursion step would use the relationship

baseexponent = baSe * baseexponent—l

and the terminating condition occurs when exponent is equal to 1 because

basel = base

5.35 (Fibonacci) The Fibonacci series
0,1,1,2,3,5,8,13,21, ...

begins with the terms 0 and 1 and has the property that each succeeding term is the sum of the two
preceding terms. a) Write a nonrecursive function fibonacci(n) that calculates the n™ Fibonacci
number. Use unsigned int for the function’s parameter and unsigned long Tong int for its return
type. b) Determine the largest Fibonacci number that can be printed on your system.

5.36 (Towers of Hanoi) Every budding computer scientist must grapple with certain classic
problems, and the Towers of Hanoi (see Fig. 5.23) is one of the most famous of these. Legend has
it that in a temple in the Far East, priests are attempting to move a stack of disks from one peg to
another. The initial stack had 64 disks threaded onto one peg and arranged from bottom to top by
decreasing size. The priests are attempting to move the stack from this peg to a second peg under
the constraints that exactly one disk is moved at a time, and at no time may a larger disk be placed
above a smaller disk. A third peg is available for temporarily holding the disks. Supposedly the world
will end when the priests complete their task, so there’s little incentive for us to facilitate their ef-
forts.

Let’s assume that the priests are attempting to move the disks from peg 1 to peg 3. We wish to
develop an algorithm that will print the precise sequence of disk-to-disk peg transfers.

If we were to approach this problem with conventional methods, we'd rapidly find ourselves
hopelessly knotted up in managing the disks. Instead, if we attack the problem with recursion in
mind, it immediately becomes tractable. Moving 7 disks can be viewed in terms of moving only
n — 1 disks (and hence the recursion) as follows:

a) Move 7 — 1 disks from peg 1 to peg 2, using peg 3 as a temporary holding area.

Exercises 241

| -]
¢ D

Fig. 5.23 | Towers of Hanoi for the case with four disks.

b) Move the last disk (the largest) from peg 1 to peg 3.
¢) Move the 7 — 1 disks from peg 2 to peg 3, using peg 1 as a temporary holding area.
The process ends when the last task involves moving 7 = 1 disk, i.e., the base case. This is
accomplished by trivially moving the disk without the need for a temporary holding area.
Write a program to solve the Towers of Hanoi problem. Use a recursive function with four
parameters:
a) The number of disks to be moved
b) The peg on which these disks are initially threaded
¢) The peg to which this stack of disks is to be moved
d) The peg to be used as a temporary holding area
Your program should print the precise instructions it will take to move the disks from the
starting peg to the destination peg. For example, to move a stack of three disks from peg 1 to peg 3,
your program should print the following series of moves:
1 — 3 (This means move one disk from peg 1 to peg 3.)
1—- 2
3—
1—
2
2
1— 3

W = W N

5.37 (Towers of Hanoi: Iterative Solution) Any program that can be implemented recursively
can be implemented iteratively, although sometimes with considerably more difficulty and consid-
erably less clarity. Try writing an iterative version of the Towers of Hanoi. If you succeed, compare
your iterative version with the recursive version you developed in Exercise 5.36. Investigate issues
of performance, clarity, and your ability to demonstrate the correctness of the programs.

5.38 (Visualizing Recursion) It’s interesting to watch recursion “in action.” Modify the factorial
function of Fig. 5.18 to print its local variable and recursive call parameter. For each recursive call,
display the outputs on a separate line and add a level of indentation. Do your utmost to make the
outputs clear, interesting and meaningful. Your goal here is to design and implement an output for-
mat that helps a person understand recursion better. You may want to add such display capabilities
to the many other recursion examples and exercises throughout the text.

5.39 (Recursive Greatest Common Divisor) The greatest common divisor of integers x and y is
the largest integer that evenly divides both x and y. Write a recursive function gcd that returns the

242 Chapter 5 C Functions

greatest common divisor of x and y. The gcd of x and y is defined recursively as follows: If'y is equal
to 0, then gcd(x, y) is x; otherwise gcd(x, y) is gcd(y, x % y), where % is the remainder operator.

5.40 (Recursive main) Can main be called recursively? Write a program containing a function
main. Include static local variable count initialized to 1. Postincrement and print the value of count
each time main is called. Run your program. What happens?

5.41 (Recursive Prime) Write a recursive function isPrime that determines whether the given
input is a prime number. Use this function in a program.

5.42 What does the following program do? What happens if you exchange lines 8 and 9?

I #include <stdio.h>

2

3 int main(void)

4 {

5 int c; // variable to hold character input by user
6

7 if ((c = getchar()) != EOF) {
8 mainQ;

9 printf("%c", c);

10 }

11 }

5.43 What does the following program do?

#include <stdio.h>
unsigned int mystery(unsigned int a, unsigned int b); // function prototype

1
2
3
4
5 dnt main(void)
6
7
8

{
printf("%s", "Enter two positive integers: ");
unsigned 1int x; // first integer
9 unsigned int y; // second integer
10 scanf("%u%u', &x, &y);
11
12 printf("The result is %u\n", mystery(x, y));
13}
14

15 // Parameter b must be a positive integer
16 // to prevent infinite recursion
17 unsigned int mystery(unsigned int a, unsigned int b)

18 {

19 // base case

20 if (1 == b) {

21 return a;

22 }

23 else { // recursive step

24 return a + mystery(a, b - 1);
25 }

26 }

5.44 After you determine what the program of Exercise 5.43 does, modify the program to func-
tion properly after removing the restriction of the second argument’s being nonnegative.

5.45 (Testing Math Library Functions) Write a program that tests the math library functions in
Fig. 5.2. Exercise each of these functions by having your program print out tables of return values
for a diversity of argument values.

Making a Difference 243

5.46 Find the error in each of the following program segments and explain how to correct it:
a) double cube(float); // function prototype
cube(float number) // function definition

{
return number * number * number;
}
b) int randomNumber = srand();
c) double y = 5
int x;
X =Y;
printf(, (double) x);
d) double square(double number)
{
double number;
return number * number;
}
e) int sum(int n)
{
if (0 ==n) {
return 0;
}
else {
return n + sum(n);
}
}

5.47 (Craps Game Modification) Modify the craps program of Fig. 5.14 to allow wagering. Pack-
age as a function the portion of the program that runs one game of craps. Initialize variable bank-
Balance to 1000 dollars. Prompt the player to enter a wager. Use a while loop to check that wager
is less than or equal to bankBalance, and if not, prompt the user to reenter wager until a valid wager
is entered. After a correct wager is entered, run one game of craps. If the player wins, increase
bankBalance by wager and print the new bankBalance. If the player loses, decrease bankBalance by
wager, print the new bankBalance, check whether bankBalance has become zero, and if so print the
message, "Sorry. You busted!" As the game progresses, print various messages to create some “chat-
ter” such as, "0h, you're going for broke, huh?" or "Aw cmon, take a chance!" or "You're up big.
Now's the time to cash in your chips!"”

5.48 (Research Project: Improving the Recursive Fibonacci Implementation) In Section 5.15, the
recursive algorithm we used to calculate Fibonacci numbers was intuitively appealing. However, re-
call that the algorithm resulted in the exponential explosion of recursive function calls. Research the
recursive Fibonacci implementation online. Study the various approaches, including the iterative
version in Exercise 5.35 and versions that use only so-called “tail recursion.” Discuss the relative
merits of each.

Making a Difference

5.49 (Global Warming Facts Quiz) The controversial issue of global warming has been widely
publicized by the film An Inconvenient Truth, featuring former Vice President Al Gore. Mr. Gore
and a U.N. network of scientists, the Intergovernmental Panel on Climate Change, shared the 2007
Nobel Peace Prize in recognition of “their efforts to build up and disseminate greater knowledge
about man-made climate change.” Research bozh sides of the global warming issue online (you
might want to search for phrases like “global warming skeptics”). Create a five-question multiple-

244 Chapter 5 C Functions

choice quiz on global warming, each question having four possible answers (numbered 1-4). Be ob-
jective and try to fairly represent both sides of the issue. Next, write an application that administers
the quiz, calculates the number of correct answers (zero through five) and returns a message to the
user. If the user correctly answers five questions, print “Excellent”; if four, print “Very good”; if
three or fewer, print “Time to brush up on your knowledge of global warming,” and include a list
of some of the websites where you found your facts.

Computer-Assisted Instruction

As computer costs decline, it becomes feasible for every student, regardless of economic circum-
stance, to have a computer and use it in school. This creates exciting possibilities for improving the
educational experience of all students worldwide as suggested by the next five exercises. [Note:
Check out initiatives such as the One Laptop Per Child Project (www.laptop.org). Also, research
“green” laptops—what are some key “going green” characteristics of these devices? Look into the
Electronic Product Environmental Assessment Tool (www.epeat.net) which can help you assess the
2 ,, . . .
greenness” of desktops, notebooks and monitors to help you decide which products to purchase.]

5.50 (Computer-Assisted Instruction) The use of computers in education is referred to as com-
puter-assisted instruction (CAI). Write a program that will help an elementary school student learn
multiplication. Use the rand function to produce two positive one-digit integers. The program
should then prompt the user with a question, such as

How much is 6 times 7?

The student then inputs the answer. Next, the program checks the student’s answer. If it’s correct,
display the message "Very good!" and ask another multiplication question. If the answer is wrong,
display the message "No. Please try again." and let the student try the same question repeatedly
until the student finally gets it right. A separate function should be used to generate each new ques-
tion. This function should be called once when the application begins execution and each time the
user answers the question correctly.

5.51 (Computer-Assisted Instruction: Reducing Student Fatigue) One problem in CAI environ-
ments is student fatigue. This can be reduced by varying the computer’s responses to hold the stu-
dent’s attention. Modify the program of Exercise 5.50 so that various comments are displayed for
each answer as follows:
Possible responses to a correct answer:
Very good!
Excellent!

Nice work!
Keep up the good work!

Possible responses to an incorrect answer:

No. Please try again.
Wrong. Try once more.
Don't give up!
No. Keep trying.
Use random-number generation to choose a number from 1 to 4 that will be used to select
one of the four appropriate responses to each correct or incorrect answer. Use a switch statement to
issue the responses.

5.52 (Computer-Assisted Instruction: Monitoring Student Performance) More sophisticated
computer-assisted instruction systems monitor the student’s performance over a period of time. The
decision to begin a new topic is often based on the student’s success with previous topics. Modify
the program of Exercise 5.51 to count the number of correct and incorrect responses typed by the
student. After the student types 10 answers, your program should calculate the percentage that are

Making a Difference 245

correct. If the percentage is lower than 75%, display "Please ask your teacher for extra help.",
then reset the program so another student can try it. If the percentage is 75% or higher, display
"Congratulations, you are ready to go to the next level!", then reset the program so another
student can try it.

5.53 (Computer-Assisted Instruction: Difficulty Levels) Exercises 5.50 through Exercise 5.52 de-
veloped a computer-assisted instruction program to help teach an elementary-school student mul-
tiplication. Modify the program to allow the user to enter a difficulty level. At a difficulty level of
1, the program should use only single-digit numbers in the problems; at a difficulty level of 2, num-
bers as large as two digits, and so on.

5.54 (Computer-Assisted Instruction: Varying the Types of Problems) Modify the program of
Exercise 5.53 to allow the user to pick a type of arithmetic problem to study. An option of 1 means
addition problems only, 2 means subtraction problems only, 3 means multiplication problems only
and 4 means a random mixture of all these types.

C Arrays

Objectives
In this chapter, you'll:

m Use the array data structure
to represent lists and tables of
values.

m Define an array, initialize an
array and refer to individual
elements of an array.

m Define symbolic constants.
m Pass arrays to functions.

m Use arrays to store, sort and
search lists and tables of
values.

m Define and manipulate
multidimensional arrays.

m Create variable-length arrays
whose size is determined at
execution time.

m Understand security issues
related to input with scanf,
output with printf and
arrays.

” Qutline

6.1 Introduction 247

6.1 Introduction 6.54 Inputting into a Character Array
6.5.5 Outputting a Character Array That

6.2 Arrays Represents a String
6.3 Defining Arrays 6.5.6 Demonstrating Character Arrays
6.4 Array Examples 6.6 Static Local Arrays and Automatic
6.4.1 Definingan Array and Using a Loop to Local Arrays
Set the Array’s Element Values 6.7 Passing Arrays to Functions
6.4.2 Initializing an Array in a Definition)
with an Initializer List 6.8 Sorting Arrays
643 Specifying an Array’s Size with a 6.9 Case Study: Computing Mean,

Symbolic Constant and Initializing

Array Elements with Calculations Median and Mode Using Arrays

6.44 Summing the Elements of an Array 6.10 Searching Arrays
645 Using Arrays to Summarize Survey 6.10.1 Searching an Array with Linear Search
Results . 6.10.2 Searching an Array with Binary Search
646 (liirgforgrnagm?rray Element Yalues with 6.11 Multidimensional Arrays
64.7 Rolling a Die 60,000,000 Times and 6.11.1 lllustrating a Double-Subcripted Array
Summarizing the Results in an Array 6.11.2 Initializing a Double-Subcripted Array
6.5 Using Character Arrays to Store and 6.11.3 Setting the Elements in One Row

. . 6.114 Totaling the Elements in a Two-
Manipulate Strings 4 Dimensgional Array

6.5.1 Inipializing a Character Array with a 6.11.5 Two-Dimensonal Array
String Manipulations

6.5.2 Initializing a Character Array with an ko
Intializer List of Characters 6.12 Variable-length Arays

6.53 Accessing the Characters in a String 6.13 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Recursion Exercises

6.1 Introduction

This chapter introduces data structures. Arrays are data structures consisting of related
data items of the same type. In Chapter 10, we discuss C’s notion of struct—a data struc-
ture consisting of related data items of possibly different types. Arrays and structs are
“static” entities in that they remain the same size throughout program execution (they
may, of course, be of automatic storage class and hence created and destroyed each time
the blocks in which they’re defined are entered and exited).

6.2 Arrays

An array is a group of contiguous memory locations that all have the same rype. To refer to
a particular location or element in the array, we specify the array’s name and the position
number of the particular element in the array.

Figure 6.1 shows an integer array called ¢, containing 12 elements. Any one of these
elements may be referred to by giving the array’s name followed by the posizion number of
the particular element in square brackets ([1). The first element in every array is the zeroth
element (i.e., the one with position number 0). An array name, like other identifiers, can
contain only letters, digits and underscores and cannot begin with a digit.

248 Chapter 6 C Arrays

All elements of this array

share the array name, ¢~ © (o] =
c[1] 6

c[2] 0

c[3] 72

c[4] 1543

c[5] -89

c[6] 0

c[7] 62

c[8] -3

c[9] 1

Position number of the c[10] 6453
element within array ¢ c[11] 78

| }

Fig. 6.1 | I[2-element array.

The position number in square brackets is called the element’s index or subscript. An
index must be an integer or an integer expression. For example, the statement
c[2] = 1000;
assigns 1000 to array element c[2]. Similarly, if a = 5 and b = 6, then the statement
cla + b] += 2;

adds 2 to array element c[11]. An indexed array name is an /value—it can be used on the
left side of an assignment.

Let’s examine array ¢ (Fig. 6.1) more closely. The array’s name is c. Its 12 elements
are referred to as c[0], c[1]1, c[2], ..., c[10] and c[11]. The value stored in c[0] is -45,
the value of ¢[1] is 6, c[2] is 0, c[7] is 62 and c[11] is 78. To print the sum of the values
contained in the first three elements of array ¢, we’d write

printf("%d", c[0] + c[1] + c[2]);
To divide the value of element 6 of array ¢ by 2 and assign the result to the variable x, write
x = c[6] / 2;

The brackets used to enclose an array’s index are actually considered to be an operaror
in C. They have the same level of precedence as the function call operator (i.c., the paren-
theses that are placed after a function name to call that function). Figure 6.2 shows the
precedence and associativity of the operators introduced to this point in the text.

Operators Associativity Type
[1 O ++ (postfix) -- (postfix) left to right highest
+ = U (prefix) - (prefix) (ype right to left unary

Fig. 6.2 | Operator precedence and associativity. (Part | of 2.)

6.3 Defining Arrays 249

Operators Associativity Type

¥/ % left to right multiplicative
+ - left to right additive

< <= > >= left to right relational

= |I= left to right equality

&& left to right logical AND
[left to right logical OR

?: right to left conditional

= 4= = k= = %= right to left assignment

, left to right comma

Fig. 6.2 | Operator precedence and associativity. (Part 2 of 2.)

6.3 Defining Arrays

Arrays occupy space in memory. You specify the type of each element and the number of
elements each array requires so that the computer may reserve the appropriate amount of
memory. The following definition reserves 12 elements for integer array ¢, which has in-
dices in the range 0-11.

int c[12];
The definition
int b[100], x[27];

reserves 100 elements for integer array b and 27 elements for integer array x. These arrays
have indices in the ranges 0-99 and 0-26, respectively. Though you can define multiple
arrays at once, defining only one per line is preferred, so you can add a comment explain-
ing each array’s purpose.

Arrays may contain other data types. For example, an array of type char can store a
character string. Character strings and their similarity to arrays are discussed in Chapter 8.
The relationship between pointers and arrays is discussed in Chapter 7.

6.4 Array Examples

This section presents several examples that demonstrate how to define and initialize arrays,
and how to perform many common array manipulations.

6.4.1 Defining an Array and Using a Loop to Set the Array’s Element
Values

Like any other variables, uninitialized array elements contain garbage values. Figure 6.3 uses
for statements to set the elements of a five-element integer array n to zeros (lines 11-13) and
print the array in tabular format (lines 18-20). The first printf statement (line 15) displays
the column heads for the two columns printed in the subsequent for statement.

250 Chapter 6 C Arrays

1 // Fig. 6.3: fig06_03.c
2 // Initializing the elements of an array to zeros.
3 #include <stdio.h>
4
5 // function main begins program execution
6 1int main(void)
7 {
8 int n[5]; // n is an array of five integers
9
10 // set elements of array n to 0
11 for (size_t i =0; i < 5; ++1) {
12 n[i] = 0; // set element at location i to 0
13 }
14
15 printf("%s%13s\n", "Element", "Value');
16
17 // output contents of array n in tabular format
18 for (size_t i =0; i < 5; ++1) {
19 printf("%7u%13d\n", i, n[il);
20 }
21 }
ETement Value
0 0
1 0
2 0
3 0
4 0
Fig. 6.3 | Initializing the elements of an array to zeros.

Notice that the counter-control variable 1 is declared to be of type size_t in each for
statement (lines 11 and 18), which according to the C standard represents an unsigned
integral type.! This type is recommended for any variable that represents an array’s size or
indices. Type size_t is defined in header <stddef.h>, which is often included by other
headers (such as <stdio.h>). [Noze: If you attempt to compile Fig. 6.3 and receive errors,
simply include <stddef.h> in your program.]

6.4.2 Initializing an Array in a Definition with an Initializer List

The elements of an array can also be initialized when the array is defined by following the
definition with an equals sign and braces, {}, containing a comma-separated list of array
initializers. Figure 6.4 initializes an integer array with five values (line 9) and prints the
array in tabular format.

1. On some compilers, size_t represents unsigned int and on others it represents unsigned long.
Compilers that use unsigned Tong typically generate a warning on line 19 of Fig. 6.3, because %u is
for displaying unsigned ints, not unsigned longs. To eliminate this warning, replace the format
specification %u with %Tu.

6.4 Array Examples 251

1 // Fig. 6.4: fig06_04.c
2 // Initializing the elements of an array with an initializer Tist.
3 #include <stdio.h>
4
5 // function main begins program execution
6 1int main(void)
7 {
8 // use initializer Tist to initialize array n
9 int n[5] = {32, 27, 64, 18, 95};
10
11 printf("%s%13s\n", "Element", "Value');
12
13 // output contents of array in tabular format
14 for (size_t i =0; i < 5; ++1) {
15 printf("%7u%13d\n", i, n[i]);
16 }
17 3}
ETement Value
0 32
1 27
2 64
3 18
4 95

Fig. 6.4 | Initializing the elements of an array with an initializer list.

If there are fewer initializers than elements in the array, the remaining elements are
initialized to zero. For example, the elements of the array n in Fig. 6.3 could have been
initialized to zero as follows:

int n[10] = {0}; // initializes entire array to zeros

This explicitly initializes the first element to zero and initializes the remaining nine ele-
ments to zero because there are fewer initializers than there are elements in the array. Ar-
rays are not automatically initialized to zero. You must at least initialize the first element
to zero for the remaining elements to be automatically zeroed. Array elements are initial-
ized before program startup for static arrays and at runtime for auromatic arrays.

Common Programming Error 6. |
Forgetting to initialize the elements of an array.

Common Programming Error 6.2

| It a syntax error to provide more initializers in an array initializer list than there are
elements in the array—for example, int n[3] = {32, 27, 64, 18}; is a syntax error,
because there are four initializers but only three array elements.

If the array size is omitted from a definition with an initializer list, the number of ele-
ments in the array will be the number of elements in the initializer list. For example,

int n[] = {1, 2, 3, 4, 53};

would create a five-element array initialized with the indicated values.

252 Chapter 6 C Arrays

6.4.3 Specifying an Array’s Size with a Symbolic Constant and
Initializing Array Elements with Calculations

Figure 6.5 initializes the elements of a five-element array s to the values 2, 4, 6, ..., 10 and
prints the array in tabular format. The values are generated by multiplying the loop coun-
ter by 2 and adding 2.

1 // Fig. 6.5: fig06_05.c
2 // Initializing the elements of array s to the even integers from 2 to 10.
3 #include <stdio.h>
4 #define SIZE 5 // maximum size of array
5
6 // function main begins program execution
7 dint main(void)
8 {
9 // symbolic constant SIZE can be used to specify array size
10 int s[SIZE]; // array s has SIZE elements
11
12 for (size_t j = 0; j < SIZE; ++j) { // set the values
13 s[jl =2+ 2 * j;
14 }
15
16 printf("%s%13s\n", "Element", "Value');
17
18 // output contents of array s in tabular format
19 for (size_t j = 0; j < SIZE; ++3) {
20 printf("%7u%13d\n", j, s[j1);
21 }
22 }
ETement Value
0 2
1 4
2 6
3 8
4 10
Fig. 6.5 | Initializing the elements of array s to the even integers from 2 to 10.

The #define preprocessor directive is introduced in this program. Line 4
#define SIZE 5

defines a symbolic constant SIZE whose value is 5. A symbolic constant is an identifier that’s
replaced with replacement text by the C preprocessor before the program is compiled. When
the program is preprocessed, all occurrences of the symbolic constant SIZE are replaced with
the replacement text 5. Using symbolic constants to specify array sizes makes programs more
modifiable. In Fig. 6.5, we could have the first for loop (line 12) fill a 1000-element array
by simply changing the value of SIZE in the #define directive from 5 to 1000. If the symbolic
constant SIZE had not been used, we’'d have to change the program in lines 10, 12 and 19.
As programs get larger, this technique becomes more useful for writing clear, easy to read,
maintainable programs—a symbolic constant (like SIZE) is easier to understand than the nu-
meric value 5, which could have different meanings throughout the code.

6.4 Array Examples 253

Common Programming Error 6.3
' Ending a #define or #include preprocessor directive with a semicolon. Remember that
preprocessor directives are not C statements.

If you terminate the #define preprocessor directive in line 4 with a semicolon, the
preprocessor replaces all occurrences of the symbolic constant SIZE in the program with
the text "5;". This may lead to syntax errors at compile time, or logic errors at execution
time. Remember that the preprocessor is 7oz the C compiler.

+= Software Engineering Observation 6.1
@ Defining the size of each array as a symbolic constant makes programs more modifiable.

Common Programming Error 6.4

Assigning a value to a symbolic constant in an executable statement is a syntax error. The
compiler does not reserve space for symbolic constants as it does for variables that hold val-
ues ar execution time.

Use only uppercase letters for symbolic constant names. This makes these constants stand
out in a program and reminds you that symbolic constants are not variables.

- } Good Programming Practice 6.1
[

|~

- } Good Programming Practice 6.2
[

1 '\ In multiword symbolic constant names, separate the words with underscores for readabilizy.
6.4.4 Summing the Elements of an Array

Figure 6.6 sums the values contained in the 12-element integer array a. The for state-
ment’s body (line 15) does the totaling.

1 // Fig. 6.6: fig06_06.c

2 // Computing the sum of the elements of an array.

3 #include <stdio.h>

4 #define SIZE 12

5

6 // function main begins program execution

7 int main(void)

8 {

9 // use an initializer Tist to initialize the array

10 int a[SIZE] = {1, 3, 5, 4, 7, 2, 99, 16, 45, 67, 89, 45};
11 int total = 0; // sum of array

12

13 // sum contents of array a

14 for (size_t i = 0; i < SIZE; ++i) {

15 total += a[i];

16 }

17

18 printf("Total of array element values 1is %d\n", total);
19 }

Fig. 6.6 | Computing the sum of the elements of an array. (Part | of 2.)

254 Chapter 6 C Arrays

Total of array element values is 383

Fig. 6.6 | Computing the sum of the elements of an array. (Part 2 of 2.)

6.4.5 Using Arrays to Summarize Survey Results

Our next example uses arrays to summarize the results of data collected in a survey. Con-
sider the problem statement.
Forty students were asked to rate the quality of the food in the student cafeteria on a

scale of 1 to 10 (1 means awful and 10 means excellent). Place the 40 responses in an
integer array and summarize the results of the poll.

This is a typical array application (Fig. 6.7). We wish to summarize the number of
responses of each type (i.e., 1 through 10). The 40-element array responses (lines 14—16)
contains the students’ responses. We use an 11-element array frequency (line 11) to count
the number of occurrences of each response. We ignore frequency[0] because it’s logical
to have response 1 increment frequency[1] rather than frequency[0]. This allows us to
use each response directly as the index in the frequency array.

1 // Fig. 6.7: fig06_07.c

2 // Analyzing a student poll.

3 #include <stdio.h>

4 #define RESPONSES_SIZE 40 // define array sizes

5 #define FREQUENCY_SIZE 11

6

7 // function main begins program execution

8 dint main(void)

9 {

10 // initialize frequency counters to 0

11 int frequency[FREQUENCY_SIZE] = {0};

12

13 // place the survey responses in the responses array

14 int responses[RESPONSES_SIZE] = {1, 2, 6, 4, 8, 5, 9, 7, 8, 10,
15 i, 6, 3, 8, 6, 10, 3, 8, 2, 7, 6, 5, 7, 6, 8, 6, 7, 5, 6, 6,
16 5, 6, 7, 5, 6, 4, 8, 6, 8, 10};

17

18 // for each answer, select value of an element of array responses
19 // and use that value as an index in array frequency to
20 // determine element to increment
21 for (size_t answer = 0; answer < RESPONSES_SIZE; ++answer) {
22 ++frequency[responses[answer]];
23 }
24
25 // display results
26 printf("%s%17s\n", "Rating", "Frequency");
27
28 // output the frequencies in a tabular format
29 for (size_t rating = 1; rating < FREQUENCY_SIZE; ++rating) {
30 printf("%6d%17d\n", rating, frequency[rating]l);
31 }
32}

Fig. 6.7 | Analyzing a student poll. (Part | of 2.)

6.4 Array Examples 255

Rating Frequency

QWO NOOUVTDA WN R
[
WHRENURUOUNNNN

=

Fig. 6.7 | Analyzing a student poll. (Part 2 of 2.)

Good Programming Practice 6.3
} Strive for program clarity. Sometimes it may be worthwhile to trade off the most efficient
S use of memory or processor time in favor of writing clearer programs.

;. Performance Tip 6.1
- Sometimes performance considerations far outweigh clarity considerations.

The for loop (lines 21-23) takes the responses one at a time from the array responses
and increments one of the 10 counters (frequency[1] to frequency[10]) in the fre-
quency array. The key statement in the loop is line 22

++frequency[responses[answer]];

which increments the appropriate frequency counter depending on the value of the ex-
pression responses [answer]. When the counter variable answer is 0, responses [answer]
is 1, so ++frequency[responses[answer]]; is interpreted as

++frequency[1];

which increments array element 1. When answer is 1, the value of responses[answer] is
2, so ++frequency[responses[answer]]; is interpreted as

++frequency[2];

which increments array element 2. When answer is 2, the value of responses[answer] is
6, so ++frequency[responses[answer]]; is interpreted as

++frequency[6];

which increments array element 6, and so on. Regardless of the number of responses pro-
cessed in the survey, only an 11-element array is required (ignoring element zero) to sum-
marize the results. If the data contained invalid values such as 13, the program would
attempt to add 1 to frequency[13]. This would be outside the bounds of the array. C has
no array bounds checking to prevent the program from referring ro an element that does not ex-
ist. Thus, an executing program can “walk off” either end of an array without warning—
a security problem that we discuss in Section 6.13. You should ensure that all array refer-
ences remain within the bounds of the array.

256 Chapter 6 C Arrays

Common Programming Error 6.5
Referring to an element outside the array bounds.

Error-Prevention Tip 6.1

When looping through an array, the array index should never go below 0 and should al-
ways be less than the total number of elements in the array (size — 1). Make sure the logp-
continuation condition prevents accessing elements outside this range.

. Error-Prevention Tip 6.2
% Programs should validate the correctness of all input values to prevent erroneous infor-
mation from affecting a program’s calculations.

6.4.6 Graphing Array Element Values with Histograms

Our next example (Fig. 6.8) reads numbers from an array and graphs the information in
the form of a bar chart or histogram—each number is printed, then a bar consisting of that
many asterisks is printed beside the number. The nested for statement (lines 18-20)
draws the bars. Note the use of puts("") to end each histogram bar (line 22).

1 // Fig. 6.8: fig06_08.c
2 // Displaying a histogram.
3 #include <stdio.h>
4 #define SIZE 5
5
6 // function main begins program execution
7 dint main(void)
8 {
9 // use initializer Tist to initialize array n
10 int n[SIZE] = {19, 3, 15, 7, 11};
11
12 printf("%s%13s%17s\n", "Element", "Value", "Histogram");
13
14 // for each element of array n, output a bar of the histogram
15 for (size_t i = 0; i < SIZE; ++i) {
16 printf("%7u%13d i, n[il);
17
18 for (int j = 1; j <= n[i]; ++j) { // print one bar
19 printf("%c", "#');
20 }
21
22 puts(""); // end a histogram bar with a newline
23 }
24 }
Element Value Histogram
0 19 TN hddd NN hhn
1 3
2 15
3 7
4 11 Tedededededehfddn

Fig. 6.8 | Displaying a histogram.

6.5 Using Character Arrays to Store and Manipulate Strings 257

6.4.7 Rolling a Die 60,000,000 Times and Summarizing the Results in
an Array

In Chapter 5, we stated that we’d show a more elegant method of writing the dice-rolling
program of Fig. 5.12. Recall that the program rolled a single six-sided die 60,000,000
times to test whether the random number generator actually produces random numbers.
An array version of this program is shown in Fig. 6.9. Line 18 replaces Fig. 5.12’s entire
switch statement.

// Fig. 6.9: fig06_09.c

1
2 // Roll a six-sided die 60,000,000 times
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <time.h>
6 #define SIZE 7
7
8 // function main begins program execution
9 1dnt main(void)
10 {
11 unsigned int frequency[SIZE] = {0}; // clear counts
12
13 srand(time(NULL)); // seed random number generator
14
15 // roll die 60,000,000 times
16 for (unsigned int roll = 1; roll <= 60000000; ++rol11) {
17 size_t face = 1 + rand() % 6;
18 ++frequency[face]; // replaces entire switch of Fig. 5.12
19 }
20
21 printf("%s%17s\n", "Face", "Frequency");
22
23 // output frequency elements 1-6 in tabular format
24 for (size_t face = 1; face < SIZE; ++face) {
25 printf("%4d%17d\n", face, frequency[face]);
26 }
27 }
Face Frequency
1 9997167
2 10003506
3 10001940
4 9995833
5 10000843
6 10000711

Fig. 6.9 | Roll asix-sided die 60,000,000 times.

6.5 Using Character Arrays to Store and Manipulate
Strings

We've discussed only integer arrays. However, arrays are capable of holding data of any
type. We now discuss storing strings in character arrays. So far, the only string-processing

258 Chapter 6 C Arrays

capability we have is outputting a string with printf. A string such as "he110" is really an
array of individual characters in C.

6.5.1 Initializing a Character Array with a String

Character arrays have several unique features. A character array can be initialized using a
string literal. For example,

char stringl[] = 3

initializes the elements of array stringl to the individual characters in the string literal
"first". In this case, the size of array stringl is determined by the compiler based on the
length of the string. The string "first" contains five characters plus a special string-termi-
nation character called the null character. Thus, array stringl actually contains six ele-
ments. The escape sequence representing the null character is "\0". All strings in C end
with this character. A character array representing a string should always be defined large
enough to hold the number of characters in the string and the terminating null character.

6.5.2 Initializing a Character Array with an Intializer List of Characters

Character arrays also can be initialized with individual character constants in an initializer
list, but this can be tedious. The preceding definition is equivalent to

char stringl[] = {'f", . : . : b

6.5.3 Accessing the Characters in a String

Because a string is really an array of characters, we can access individual characters in a
string directly using array index notation. For example, string1[0] is the character '’
and stringl[3] is the character 's".

6.5.4 Inputting into a Character Array

We also can input a string directly into a character array from the keyboard using scanf
and the conversion specifier %s. For example,

char string2[20];

creates a character array capable of storing a string of az most 19 characters and a terminating
null character. The statement

scanf(, string2);

reads a string from the keyboard into string2. The name of the array is passed to scanf
without the preceding & used with nonstring variables. The & is normally used to provide
scanf with a variable’s location in memory so that a value can be stored there. In Section 6.7,
when we discuss passing arrays to functions, we'll see that the value of an array name s rhe
addpess of the start of the array; therefore, the & is not necessary. Function scanf will read char-
acters until a space, tab, newline or end-of-file indicator is encountered. The string string2
should be no longer than 19 characters to leave room for the terminating null character. If
the user types 20 or more characters, your program may crash or create a security vulnerabil-
ity called buffer overflow. For this reason, we used the conversion specifier %19s so that
scanf reads a maximum of 19 characters and does not write characters into memory beyond

6.5 Using Character Arrays to Store and Manipulate Strings 259

the end of the array string2. (In Section 6.13, we revisit the potential security issue raised
by inputting into a character array and discuss the C standard’s scanf_s function.)

I¢’s your responsibility to ensure that the array into which the string is read is capable
of holding any string that the user types at the keyboard. Function scanf does nor check
how large the array is. Thus, scanf can write beyond the end of the array.

6.5.5 Outputting a Character Array That Represents a String

A character array representing a string can be output with printf and the %s conversion
specifier. The array string2 is printed with the statement

printf("%s\n", string2);

Function printf, like scanf, does not check how large the character array is. The char-
acters of the string are printed until a terminating null character is encountered. [Consider
what would print if, for some reason, the terminating null character were missing,]

6.5.6 Demonstrating Character Arrays

Figure 6.10 demonstrates initializing a character array with a string literal, reading a string
into a character array, printing a character array as a string and accessing individual characters
of a string. The program uses a for statement (lines 22-24) to loop through the stringl
array and print the individual characters separated by spaces, using the %c conversion speci-
fier. The condition in the for statement is true while the counter is less than the size of the
array and the terminating null character has #or been encountered in the string. In this pro-
gram, we read only strings that do not contain whitespace characters. We'll show how to read
strings with whitespace characters in Chapter 8. Notice that lines 17-18 contain two string
literals separated only by whitespace. The compiler automatically combines such string literals
into one—this is helpful for making long string literals more readable.

I // Fig. 6.10: fig06_10.c

2 // Treating character arrays as strings.

3 #include <stdio.h>

4 #define SIZE 20

5

6 // function main begins program execution

7 int main(void)

8 {

9 char stringl[SIZE]; // reserves 20 characters

10 char string2[] = "string literal"; // reserves 15 characters
11

12 // read string from user into array stringl

13 printf("%s", "Enter a string (no longer than 19 characters): ");
14 scanf("%19s", stringl); // input no more than 19 characters
15

16 // output strings

17 printf("stringl is: %s\nstring2 is: %s\n"

18 "stringl with spaces between characters is:\n",

19 stringl, string2);

Fig. 6.10 | Treating character arrays as strings. (Part | of 2.)

260 Chapter 6 C Arrays

20

21 // output characters until null character 1is reached

22 for (size_t i = 0; i < && stringl[i] != ; ++i) {
23 printf(, stringl[i]);

24 3

25

26 puts(");

27 }

Enter a string (no longer than 19 characters): Hello there
stringl is: Hello

string2 is: string Tliteral

stringl with spaces between characters is:

Hel1lo

Fig. 6.10 | Treating character arrays as strings. (Part 2 of 2.)

6.6 Static Local Arrays and Automatic Local Arrays

Chapter 5 discussed the storage-class specifier static. A static local variable exists for
the duration of the program but is visible only in the function body. We can apply static
to a local array definition so the array is 7oz created and initialized each time the function
is called and the array is 7o destroyed each time the function is exited in the program. This
reduces program execution time, particularly for programs with frequently called func-
tions that contain large arrays.

- Performance Tip 6.2

> I functions that contain automatic arrays where the function is in and out of scope fre-
quently, make the array static so it’s not created each time the function is called.

Arrays that are static are initialized once at program startup. If you do not explicitly
initialize a static array, that array’s elements are initialized to zero by default.

Figure 6.11 demonstrates function staticArrayInit (lines 21-39) with a local
static array (line 24) and function automaticArrayInit (lines 42-60) with a local auto-
matic array (line 45). Function staticArrayInit is called twice (lines 12 and 16). The
local static array in the function is initialized to zero before program startup (line 24).
The function prints the array, adds 5 to each element and prints the array again. The
second time the function is called, the static array contains the values stored during the
first function call.

Function automaticArrayInit is also called twice (lines 13 and 17). The elements of
the automatic local array in the function are initialized with the values 1, 2 and 3 (line 45).
The function prints the array, adds 5 to each element and prints the array again. The
second time the function is called, the array elements are initialized to 1, 2 and 3 again
because the array has automatic storage duration.

s, Common Programming Error 6.6
| Assuming that elements of a local static array are initialized to zero every time the func-
tion in which the array is defined is called.

6.6 Static Local Arrays and Automatic Local Arrays 261

1 // Fig. 6.11: fig06_11.c

2 // Static arrays are initialized to zero if not explicitly initialized.
3 #include <stdio.h>

4

5 void staticArrayInit(void); // function prototype

6 void automaticArrayInit(void); // function prototype
7

8 // function main begins program execution

9 1int main(void)

10 {

11 puts("First call to each function:");

12 staticArrayInit();

13 automaticArrayInit(Q);

14

15 puts("\n\nSecond call to each function:");

16 staticArrayInit(Q);

17 automaticArrayInit();

18 3}

19

20 // function to demonstrate a static local array
21 void staticArrayInit(void)

22 {

23 // initializes elements to 0 before the function is called
24 static int arrayl[3];

25

26 puts("\nValues on entering staticArrayInit:");

27

28 // output contents of arrayl

29 for (size_t i = 0; i <= 2; ++i) {

30 printf("arrayl[%u] = %d ", i, arrayl[i]);

31 }

32

33 puts("\nValues on exiting staticArrayInit:");

34

35 // modify and output contents of arrayl

36 for (size_t i = 0; i <= 2; ++i) {

37 printf("arrayl[%ul = %d ", i, arrayl[i] += 5);
38 }

39 1}

40

41 // function to demonstrate an automatic local array
42 void automaticArrayInit(void)

43 {

44 // initializes elements each time function is called
45 int array2[3] = {1, 2, 3};

46

47 puts("\n\nValues on entering automaticArrayInit:");
48

49 // output contents of array?2

50 for (size_t i = 0; i <= 2; ++i) {

51 printf("array2[%ul = %d ", i, array2[i]);

52 }

53

Fig. 6.11 | Static arrays are initialized to zero if not explicitly initialized. (Part I of 2.)

262 Chapter 6 C Arrays

54 puts();
55

56 // modify and output contents of array?2

57 for (size_t i = 0; i <= 2; ++i) {

58 printf(, i, array2[i] += 5);
59 }

60 }

First call to each function:

Values on entering staticArrayInit:

arrayl[0] = 0 arrayl[l] = 0 arrayl[2] =0
Values on exiting staticArrayInit:
arrayl[0] = 5 arrayl[l] =5 arrayl[2] =5
Values on entering automaticArrayInit:
array2[0] = 1 array2[1l] = 2 array2[2] = 3
VaTlues on exiting automaticArrayInit:
array2[0] = 6 array2[l] = 7 array2[2] =8

Second call to each function:

Values on entering staticArrayInit:

arrayl[0] = 5 arrayl[1] = 5 arrayl[2] = 5 — values preserved from last call
Values on exiting staticArrayInit:

arrayl[0] = 10 arrayl[l] = 10 arrayl[2] = 10

Values on entering automaticArrayInit:
array2[0] = 1 array2[1l] = 2 array2[2]
Values on exiting automaticArrayInit:

array2[0] = 6 array2[1l] = 7 array2[2]

3 — values reinitialized after last call

8

Fig. 6.11 | Static arrays are initialized to zero if not explicitly initialized. (Part 2 of 2.)

6.7 Passing Arrays to Functions

To pass an array argument to a function, specify the array’s name without any brackets.
For example, if array hourlyTemperatures has been defined as

int hourlyTemperatures[1;
the function call
modifyArray ChourlyTemperatures,)

passes array hourTyTemperatures and its size to function modifyArray.

Recall that all arguments in C are passed &y value. C automatically passes arrays to
functions by reference (again, we'll see in Chapter 7 that this is 7oz a contradiction)—the
called functions can modify the element values in the callers’ original arrays. The array’s
name evaluates to the address of the array’s first element. Because the starting address of
the array is passed, the called function knows precisely where the array is stored. Therefore,
when the called function modifies array elements in its function body, i’s modifying the
actual elements of the array in their original memory locations.

Figure 6.12 demonstrates that “the value of an array name” is really the address of the
first element of the array by printing array, &rray[0] and &array using the %p conver-

6.7 Passing Arrays to Functions 263

sion specifier for printing addresses. The %p conversion specifier normally outputs
addresses as hexadecimal numbers, buc this is compiler dependent. Hexadecimal (base 16)
numbers consist of the digits 0 through 9 and the letters A through F (these letters are the
hexadecimal equivalents of the decimal numbers 10-15). Appendix C provides an in-
depth discussion of the relationships among binary (base 2), octal (base 8), decimal (base
10; standard integers) and hexadecimal integers. The output shows that array, &array
and &array[0] have the same value, namely 0031F930. The output of this program is
system dependent, but the addresses are always identical for a particular execution of this
program on a particular computer.
. Performance Tip 6.3
_ﬁ’ Passing arrays by reference makes sense for performance reasons. If arrays were passed by
value, a copy of each element would be passed. For large, frequently passed arrays, this

ZUOMZ&Z’ be time Comuming ﬂﬂd would consume 5t0mgefbr l‘he COPiZS 0fl'}]€ ﬂrﬂl}lf.

1 // Fig. 6.12: fig06_12.c
2 // Array name is the same as the address of the array’s first element.
3 #include <stdio.h>
4
5 // function main begins program execution
6 1int main(void)
7 {
8 char array[5]; // define an array of size 5
9
10 printf(,
11 array, &array[0], &array);
12 }
array = 0031F930

&array[0] = 0031F930

&array = 0031F930

Fig. 6.12 | Array name is the same as the address of the array’s first element.

Software Engineering Observation 6.2
It’s possible to pass an array by value (by placing it in a struct as we explain in
.Y Chapter 10, C Structures, Unions, Bit Manipulation and Enumerations).

Although entire arrays are passed by reference, individual array elements are passed by
value exactly as simple variables are. Such simple single pieces of data (such as individual
ints, floats and chars) are called scalars. To pass an element of an array to a function,
use the indexed name of the array element as an argument in the function call. In
Chapter 7, we show how to pass scalars (i.e., individual variables and array elements) to
functions by reference.

For a function to receive an array through a function call, the function’s parameter list
must specify that an array will be received. For example, the function header for function
modifyArray (that we called earlier in this section) might be written as

void modifyArray(int b[], size_t size)

264 Chapter 6 C Arrays

indicating that modifyArray expects to receive an array of integers in parameter b and the
number of array elements in parameter size. The size of the array is not required between
the array brackets. If it’s included, the compiler checks that it’s greater than zero, then
ignores it. Specifying a negative size is a compilation error. Because arrays are automati-
cally passed by reference, when the called function uses the array name b, it will be refer-
ring to the array in the caller (array hourlyTemperatures in the preceding call). In
Chapter 7, we introduce other notations for indicating that an array is being received by
a function. As we’ll see, these notations are based on the intimate relationship between
arrays and pointers.

Difference Between Passing an Entire Array and Passing an Array Element

Figure 6.13 demonstrates the difference between passing an entire array and passing an in-
dividual array element. The program first prints the five elements of integer array a (lines
19-21). Next, a and its size are passed to function modifyArray (line 25), where each of
a’s elements is multiplied by 2 (lines 48-50). Then a is reprinted in main (lines 29-31).
As the output shows, the elements of a are indeed modified by modi fyArray. Now the pro-
gram prints the value of a[3] (line 35) and passes it to function modifyETement (line 37).
Function modi fyETement multiplies its argument by 2 (line 58) and prints the new value.
When a[3] is reprinted in main (line 40), it has 70f been modified, because individual ar-
ray elements are passed by value.

// Fig. 6.13: fig06_13.c

// Passing arrays and individual array elements to functions.
#include <stdio.h>

#define

// function prototypes
void modifyArray(int b[], size_t size);
void modifyElement(int e);

VoO~NONUND WN -

10 // function main begins program execution
Il dnt main(void)

12 {

13 int a[] =4{0, 1, 2, 3, 4}; // initialize array a
14

15 puts(

16)

17

18 // output original array

19 for (size_t i = 0; i < ;o++1) {

20 printf(, alil);

21 }

22

23 puts(""); // outputs a newline

24

25 modifyArray(a,); // pass array a to modifyArray by reference
26 puts();

27

Fig. 6.13 | Passing arrays and individual array elements to functions. (Part | of 2.)

6.7 Passing Arrays to Functions 265

28 // output modified array

29 for (size_t i = 0; i < SIZE; ++i1) {

30 printf("%3d", a[il]);

31 }

32

33 // output value of a[3]

34 printf("\n\n\nEffects of passing array element "
35 "by value:\n\nThe value of a[3] 1is %d\n", a[3]);
36

37 modifyElement(al[3]1); // pass array element a[3] by value
38

39 // output value of a[3]

40 printf("The value of a[3] 1is %d\n", a[3]);

41 1}

42

43 // in function modifyArray, "b" points to the original array "a
44 // in memory

45 void modifyArray(int b[], size_t size)

46 {

47 // multiply each array element by 2

48 for (size_t j = 0; j < size; ++j) {

49 b[j] *= 2; // actually modifies original array

50 }

51 }

52

53 // in function modifyElement, "e" is a local copy of array element
54 // a[3] passed from main

55 void modifyElement(int e)

56 {

57 // multiply parameter by 2

58 printf("Value in modifyElement is %d\n", e *= 2);
59 }

Effects of passing entire array by reference:

The values of the original array are:

01 2 3 4
The values of the modified array are:
0 2 4 6 8

Effects of passing array element by value:

The value of a[3] is 6
Value in modifyElement is 12
The value of a[3] is 6

Fig. 6.13 | Passing arrays and individual array elements to functions. (Part 2 of 2.)

There may be situations in your programs in which a function should 7oz be allowed
to modify array elements. C provides the type qualifier const (for “constant”) that can be
used to prevent modification of array values in a function. When an array parameter is pre-
ceded by the const qualifier, the array elements become constant in the function body—

266 Chapter 6 C Arrays

any attempt to modify an element of the array in the function body results in a compile-
time error.

Using the const Qualifier with Array Parameters

Figure 6.14 shows the definition of a function named tryToModifyArray that’s defined
with the parameter const int b[] (line 3). This specifies that array b is constant and cannot
be modified. Each of the function’s attempts to modify array elements results in a compiler
error. The const qualifier is discussed in additional contexts in Chapter 7.

Software Engineering Observation 6.3

The const type qualifier can be applied to an array parameter in a function definition to
=4y prevent the original array from being modified in the function body. This is another
example of the principle of least privilege. A function should not be given the capability to
modify an array in the caller unless it’s absolutely necessary.

1 // in function tryToModifyArray, array b is const, so it cannot be
2 // used to modify its array argument in the caller
3 void tryToModifyArray(const int b[])
4 {
5 b[0] /= 2; // error
6 b[1] /= 2; // error
7 b[2] /= 2; // error
8 1}
Fig. 6.14 | Using the const type qualifier with arrays.

6.8 Sorting Arrays

Sorting data (i.e., placing the data into ascending or descending order) is one of the most
important computing applications. A bank sorts all checks by account number so that it
can prepare individual bank statements at the end of each month. Telephone companies
sort their lists of accounts by last name and, within that, by first name to make it easy to
find phone numbers. Virtually every organization must sort some data, and in many cases
massive amounts of it. Sorting data is an intriguing problem which has attracted some of
the most intense research efforts in the field of computer science. In this chapter we discuss
a simple sorting scheme. In Chapter 12 and Appendix D, we investigate more complex
schemes that yield better performance.

3 Performance Tip 6.4
ﬁ' Often, the simplest algorithms perform poorly. Their virtue is that they’re easy to write, test
- and debug. More complex algorithms are often needed to realize maximum performance.

Figure 6.15 sorts the values in the elements of the 10-element array a (line 10) into
ascending order. The technique we use is called the bubble sort or the sinking sort because
the smaller values gradually “bubble” their way upward to the top of the array like air bub-
bles rising in water, while the larger values sink to the bottom of the array. The technique
is to make several passes through the array. On each pass, successive pairs of elements (ele-
ment 0 and element 1, then element 1 and element 2, etc.) are compared. If a pair is in

6.8 Sorting Arrays 267

increasing order (or if the values are identical), we leave the values as they are. If a pair is
in decreasing order, their values are swapped in the array.

1 // Fig. 6.15: fig06_15.c
2 // Sorting an array's values into ascending order.
3 #include <stdio.h>
4 #define SIZE 10
5
6 // function main begins program execution
7 dint main(void)
8 {
9 // initialize a
10 int a[SIZE] = {2, 6, 4, 8, 10, 12, 89, 68, 45, 37};
11
12 puts('"Data items 1in original order');
13
14 // output original array
15 for (size_t i = 0; i < SIZE; ++1) {
16 printf("%4d”, alil);
17 }
18
19 // bubble sort
20 // loop to control number of passes
21 for (unsigned int pass = 1; pass < SIZE; ++pass) {
22
23 // loop to control number of comparisons per pass
24 for (size_t i = 0; i < SIZE - 1; ++i) {
25
26 // compare adjacent elements and swap them if first
27 // element is greater than second element
28 if (a[i] > a[i + 11) {
29 int hold = a[i];
30 ali] = a[i + 1];
31 ali + 1] = hold;
32 }
33 }
34 }
35
36 puts("\nData items 1in ascending order");
37
38 // output sorted array
39 for (size_t i = 0; i < SIZE; ++1) {
40 printf("%4d”, alil);
41 3
42
43 puts(");
4 1}
Data items in original order
2 6 4 8 10 12 89 68 45 37
Data items in ascending order
2 4 6 8 10 12 37 45 68 89

Fig. 6.15 | Sorting an array’s values into ascending order.

268 Chapter 6 C Arrays

First the program compares a[0] to a[1], then a[1] to a[2], then a[2] to a[3], and
so on until it completes the pass by comparing a[8] to a[9]. Although there are 10 ele-
ments, only nine comparisons are performed. Because of the way the successive compari-
sons are made, a large value may move down the array many positions on a single pass, but
a small value may move up only one position.

On the first pass, the largest value is guaranteed to sink to the bottom element of the
array, a[9]. On the second pass, the second-largest value is guaranteed to sink to a[8]. On
the ninth pass, the ninth-largest value sinks to a[1]. This leaves the smallest value in a[0],
so only nine passes of the array are needed to sort the array, even though there are zen ele-
ments.

The sorting is performed by the nested for loops (lines 21-34). If a swap is necessary,
i’s performed by the three assignments

hold = alil;

afil = a[i + 1];
a[i + 1] = hold;

where the extra variable hold temporarily stores one of the two values being swapped. The
swap cannot be performed with only the two assignments

ali]l = al[i + 11;

ali + 1] = a[il;
If, for example, a[i] is 7 and a[i + 1] is 5, after the first assignment both values will be 5
and the value 7 will be lost—hence the need for the extra variable hold.

The chief virtue of the bubble sort is that it’s easy to program. However, it runs slowly
because every exchange moves an element only one position closer to its final destination.
This becomes apparent when sorting large arrays. In the exercises, we’ll develop more effi-
cient versions of the bubble sort. Far more efficient sorts than the bubble sort have been
developed. We'll investigate other algorithms in Appendix D. More advanced courses
investigate sorting and searching in greater depth.

6.9 Case Study: Computing Mean, Median and Mode
Using Arrays

We now consider a larger example. Computers are commonly used for survey data analysis
to compile and analyze the results of surveys and opinion polls. Figure 6.16 uses array re-
sponse initialized with 99 responses to a survey. Each response is a number from 1 t0 9. The
program computes the mean, median and mode of the 99 values. Figure 6.17 contains a
sample run of this program. This example includes most of the common manipulations
usually required in array problems, including passing arrays to functions.

// Fig. 6.16: fig06_16.c

// Survey data analysis with arrays:

// computing the mean, median and mode of the data.
#include <stdio.h>

#define

Ndh WN -

Fig. 6.16 | Survey data analysis with arrays: computing the mean, median and mode of the data.
(Part I of 4.)

6.9 Case Study: Computing Mean, Median and Mode Using Arrays 269

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

// function prototypes

void mean(const unsigned int answer[]);

void median(unsigned int answer[]);

void mode(unsigned int freq[], unsigned const int answer[]) ;
void bubbleSort(int a[]);

void printArray(unsigned const int a[]);

// function main begins program execution
int main(void)

{

}

unsigned int frequency[10] = {0}; // initialize array frequency

// initialize array response

unsigned int response[SIZE] =

{6, 7, 8, 9, 8, 7, 8, 9, 8, 9,
7, 8 9,5,9, 8,7, 8, 7, 8,
6, 7, 8,9, 3,9, 8,7, 8,7,
7, 8, 9, 8,9, 8,9, 7, 8, 9,
6, 7, 8, 7, 8, 7, 9, 8, 9, 2,
7, 8, 9, 8,9, 8,9, 7,5, 3,
5, 6,7, 2,5, 3,9, 4, 6, 4,
7, 8 9, 6, 8, 7, 8, 9, 7, 8,
7, 4, 4, 2, 5, 3, 8, 7, 5, 6,
4, 5,6, 1, 6,5, 7, 8, 7};

// process responses
mean(response) ;
median(response) ;
mode(frequency, response);

// calculate average of all response values
void mean(const unsigned int answer[])

{

}

pr-i ntf("%s\n%s\n%s\n" s Wk kedfede ! s " Mean“ s ":‘::‘:7‘::‘::’::’:7’:7’:") ;
unsigned int total = 0; // variable to hold sum of array elements

// total response values
for (size_t j = 0; j < SIZE; ++3j) {
total += answer[j];

}

printf("The mean is the average value of the data\n"
"items. The mean is equal to the total of\n"
"all the data items divided by the number\n"
"of data items (%u). The mean value for\n"
"this run 1is: %u / %u = %.4f\n\n",
SIZE, total, SIZE, (double) total / SIZE);

Fig. 6.16 | Survey data analysis with arrays: computing the mean, median and mode of the data.
(Part 2 of 4.)

270 Chapter 6 C Arrays

57
58 // sort array and determine median element's value
59 void median(unsigned int answer[])

60 {

6l printf("\n%s\n%s\n%s\n%s",

62 Wkdefefedede ! s " Med-ian" s Wkdefefdeddt? s
63 "The unsorted array of responses 1is'");
64

65 printArray(answer); // output unsorted array
66

67 bubbleSort(answer); // sort array

68

69 printf("%s", "\n\nThe sorted array 1is");

70 printArray(answer); // output sorted array
71

72 // display median element

73 printf("\n\nThe median is element %u of\n"
74 "the sorted %u element array.\n"

75 "For this run the median 1is %u\n\n",
76 SIZE / 2, SIZE, answer[SIZE / 2]);

77 }

78

79 // determine most frequent response
80 void mode(unsigned int freq[], const unsigned int answer[])
81 {

82 pr--| ntf("\n%s\n%s\n%s\n" s Weededededededee! s " Mode" s ":'::'::':7':7'::'::'::':") ;
83

84 // initialize frequencies to 0

85 for (size_t rating = 1; rating <= 9; ++rating) {

86 freq[rating] = 0;

87 }

88

89 // summarize frequencies

90 for (size_t j = 0; j < SIZE; ++j) {

91 ++freq[answer[j]];

92 }

93

94 // output headers for result columns

95 printf("%s%11s%19s\n\n%54s\n%54s\n\n",

96 ""Response", "Frequency", "Histogram",

97 "1 1 2 2", "5 0 5 0 5"

98

99 // output results

100 unsigned int Tlargest = 0; // represents largest frequency
101 unsigned int modeValue = 0; // represents most frequent response
102

103 for (rating = 1; rating <= 9; ++rating) {

104 printf("%8u%llu ", rating, freql[ratingl);

105

Fig. 6.16 | Survey data analysis with arrays: computing the mean, median and mode of the data.
(Part 3 of 4.)

6.9 Case Study: Computing Mean, Median and Mode Using Arrays

271

106
107
108
109
110
111
112
113
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

// keep track of mode value and largest frequency value
if (freq[rating]l > Targest) {

Targest = freq[rating];

modeValue = rating;

}

// output histogram bar representing frequency value

for (unsigned int h = 1; h <= freq[rating]; ++h) {
printf(ll%sll’ Il.kll);

}

puts(""); // being new line of output
}

// display the mode value

printf("\nThe mode is the most frequent value.\n"
"For this run the mode 1is %u which occurred"
" %u times.\n", modeValue, Targest);

}

// function that sorts an array with bubble sort algorithm
void bubbleSort(unsigned int a[])

{
// Toop to control number of passes
for (unsigned int pass = 1; pass < SIZE; ++pass) {
// loop to control number of comparisons per pass
for (size_t j = 0; j < SIZE - 1; ++j) {
// swap elements if out of order
if @il > afj + 11D {
unsigned int hold = a[j];
aljl = al[j + 11;
alj + 1] = hold;
}
}
}
}

// output array contents (20 values per row)
void printArray(const unsigned int a[])

{
// output array contents
for (size_t j = 0; j < SIZE; ++3j) {
if (3 % 20 == 0) { // begin new 1ine every 20 values
puts(llll) ;
}
printf("%2u", aljl);
3
}

Fig. 6.16 | Survey data analysis with arrays: computing the mean, median and mode of the data.
(Part 4 of 4.)

272 Chapter 6 C Arrays

Fededededededede

Mean

Fededededededede

The mean is the average value of the data
items. The mean is equal to the total of
all the data items divided by the number
of data items (99). The mean value for
this run is: 681 / 99 = 6.8788

Fededededededede

Median

The unsorted array of re
6789878989738
6789398787738
6787879892738
5672539464738
744253875645

The sorted array is
122233334444
566666666¢677
777777777777
8388888888888
999999999999

The median is element 49

= & 00 w1 S

O 00NN B
O 00 00N v
O 00 00~V

of

the sorted 99 element array.
For this run the median is 7

Fededededededd

Mode

Fededededededed

Response Frequency

1 1
2 3
3 4
4 5
5 8
6 9
7 23
8 27
9 19

o 00 W W WOMm
U1~ 00 00 00
\IOOkO@\IUl.
0 O NN
NN Voo N
oo W W

O 00 0o~V
O 00 0o N Vv
O 00 00N v
O 00 00N Vv

[o e BNV,

Histogram

The mode is the most frequent value.
For this run the mode is 8 which occurred 27 times.

5 0

Fig. 6.17 | Sample run for the survey data analysis program.

6.10 Searching Arrays 273

Mean
The mean is the arithmetic average of the 99 values. Function mean (Fig. 6.16, lines 39—
56) computes the mean by totaling the 99 elements and dividing the result by 99.

Median

The median is the middle value. Function median (lines 59-77) determines the median by
calling function bubbleSort (defined in lines 127-143) to sort the array of responses into
ascending order, then picking answer[SIZE / 2] (the middle element) of the sorted array.
When the number of elements is even, the median should be calculated as the mean of the
two middle elements. Function median does not currently provide this capability. Func-
tion printArray (lines 146-157) is called to output the response array.

Mode

The mode is the value that occurs most frequently among the 99 responses. Function mode
(lines 80-124) determines the mode by counting the number of responses of each type,
then selecting the value with the greatest count. This version of function mode does not
handle a tie (see Exercise 6.14). Function mode also produces a histogram to aid in deter-
mining the mode graphically.

6.10 Searching Arrays

You'll often work with large amounts of data stored in arrays. It may be necessary to de-
termine whether an array contains a value that matches a certain key value. The process of
finding a particular element of an array is called searching. In this section we discuss two
searching techniques—the simple linear search technique and the more efficient (but
more complex) binary search technique. Exercises 6.32 and 6.33 ask you to implement
recursive versions of the linear search and the binary search, respectively.

6.10.1 Searching an Array with Linear Search

The linear search (Fig. 6.18) compares each element of the array with the search key. Be-
cause the array is not in any particular order, it’s just as likely that the value will be found
in the first element as in the last. On average, therefore, the program will have to compare
the search key with half the elements of the array.

1 // Fig. 6.18: fig06_18.c

2 // Linear search of an array.

3 #include <stdio.h>

4 #define

5

6 // function prototype

7 size_t linearSearch(const int array[], int key, size_t size);
8

9 // function main begins program execution
10 1int main(void)

11 {

12 int a[1; // create array a

13

Fig. 6.18 | Linear search of an array. (Part | of 2.)

274 Chapter 6 C Arrays

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

// create some data
for (size_t x = 0; x < SIZE; ++x) {
a[x] = 2 * x;

}

printf("Enter integer search key: ");
int searchKey; // value to Tlocate 1in array a
scanf("%d", &searchKey);

// attempt to Tocate searchKey 1in array a
size_t index = TinearSearch(a, searchKey, SIZE);

// display results
if (index != -1) {
printf("Found value at index %d\n", index);
}
else {
puts('vValue not found™);
}
}

// compare key to every element of array until the location is found
// or until the end of array is reached; return index of element
// if key is found or -1 if key is not found
size_t linearSearch(const int array[], int key, size_t size)
{
// Tloop through array
for (size_t n = 0; n < size; ++n) {

if (array[n] == key) {
return n; // return location of key
}
}

return -1; // key not found

Enter integer search key: 36
Found value at index 18

Enter integer search key: 37
Value not found

Fig. 6.18 | Linear search of an array. (Part 2 of 2.)

6.10.2 Searching an Array with Binary Search

The linear searching method works well for small or unsorted arrays. However, for large
arrays linear searching is inefficient. If the array is sorted, the high-speed binary search tech-
nique can be used.

6.10 Searching Arrays 275

The binary search algorithm eliminates from consideration one-half of the elements in a
sorted array after each comparison. The algorithm locates the middle element of the array and
compatres it to the search key. If they’re equal, the search key is found and the array index of
that element is returned. If they’re not equal, the problem is reduced to searching one-
half of the array. If the search key is less than the middle element of the array, the algorithm
searches the first half of the array, otherwise the algorithm searches the second half: If the
search key is not the middle element in the specified subarray (piece of the original array),
the algorithm repeats on one-quarter of the original array. The search continues until the
search key is equal to the middle element of a subarray, or until the subarray consists of one
element that’s not equal to the search key (i.e., the search key is not found).

In a worst case-scenario, searching a sorted array of 1023 elements takes o7y 10 com-
parisons using a binary search. Repeatedly dividing 1,024 by 2 yields the values 512, 256,
128, 64, 32, 16, 8, 4, 2 and 1. The number 1,024 (219) is divided by 2 only 10 times to
get the value 1. Dividing by 2 is equivalent to one comparison in the binary search algo-
rithm. An array of 1,048,576 (22°) elements takes a maximum of only 20 comparisons to
find the search key. A sorted array of one billion elements takes a maximum of only 30
comparisons to find the search key. This is a tremendous increase in performance over a
linear search of a sorted array, which requires comparing the search key to an average of
half of the array elements. For a one-billion-element array, this is a difference between an
average of 500 million comparisons and a maximum of 30 comparisons! The maximum
comparisons for any array can be determined by finding the first power of 2 greater than
the number of array elements.

Figure 6.19 presents the iterative version of function binarySearch (lines 40-68).
The function receives four arguments—an integer array b to be searched, an integer
searchKey, the Tow array index and the high array index (these define the portion of the
array to be searched). If the search key does 7oz match the middle element of a subarray,
the Tow index or high index is modified so that a smaller subarray can be searched. If the
search key is Jess than the middle element, the high index is set to middTe - 1 and the search
is continued on the elements from Tow to middle - 1. If the search key is greater than the
middle element, the Tow index is set to middTe + 1 and the search is continued on the ele-
ments frommiddle + 1 to high. The program uses an array of 15 elements. The first power
of 2 greater than the number of elements in this array is 16 (24), so no more than 4 com-
parisons are required to find the search key. The program uses function printHeader
(lines 71-88) to output the array indices and function printRow (lines 92-110) to output
cach subarray during the binary search process. The middle element in each subarray is
marked with an asterisk (*) to indicate the element to which the search key is compared.

// Fig. 6.19: fig06_19.c

// Binary search of a sorted array.
#include <stdio.h>

#define

// function prototypes
size_t binarySearch(const int b[], int searchKey, size_t Tow, size_t high);

~NOoONWVNh WN=-

Fig. 6.19 | Binary search of a sorted array. (Part | of 4.)

276 Chapter 6 C Arrays

8 void printHeader(void);

9 void printRow(const int b[], size_t low, size_t mid, size_t high);
10

Il // function main begins program execution

12 1int main(void)

13 {

14 int a[SIZE]; // create array a

15

16 // create data

17 for (size_t i = 0; i < SIZE; ++i1) {

18 ali]l = 2 * 1;

19 }

20

21 printf("%s", "Enter a number between 0 and 28: ");
22 int key; // value to locate in array a

23 scanf("%d", &key);

24

25 printHeader();

26

27 // search for key 1in array a

28 size_t result = binarySearch(a, key, 0, SIZE - 1);
29

30 // display results

31 if (result != -1) {

32 printf("\n%d found at index %d\n", key, result);
33 }

34 else {

35 printf("\n%d not found\n", key);

36 }

37 %}

38

39 // function to perform binary search of an array
40 size_t binarySearch(const int b[], int searchKey, size_t Tow, size_t high)
41 {

42 // loop until Tow index is greater than high index

43 while (Tow <= high) {

44

45 // determine middle element of subarray being searched
46 size_t middle = (low + high) / 2;

47

48 // display subarray used in this loop iteration

49 printRow(b, low, middle, high);

50

51 // if searchKey matched middle element, return middle
52 if (searchKey == b[middle]) {

53 return middle;

54 }

55

56 // if searchKey is less than middle element, set new high
57 else if (searchKey < b[middle]) {

58 high = middle - 1; // search low end of array

59 } if

Fig. 6.19 | Binary search of a sorted array. (Part 2 of 4.)

6.10 Searching Arrays 277

60

61 // if searchKey is greater than middle element, set new Tow
62 else {

63 Tow = middle + 1; // search high end of array
64 }

65 } // end while

66

67 return -1; // searchKey not found

68 }

69

70 // Print a header for the output

71 void printHeader(void)

72 {

73 puts("\nIndices:");

74

75 // output column head

76 for (unsigned int i = 0; i < SIZE; ++i) {
77 printf("%3u ", 1i);

78 }

79

80 puts(""); // start new Tine of output

81

82 // output Tine of - characters

83 for (unsigned int i = 1; i <= 4 * SIZE; ++i) {
84 printf("%s", "-");

85 }

86

87 puts(""); // start new Tine of output

88 }

89

90 // Print one row of output showing the current

91 // part of the array being processed.

92 void printRow(const int b[], size_t low, size_t mid, size_t high)
93 {

94 // loop through entire array

95 for (size_t i = 0; i < SIZE; ++i) {

96

97 // display spaces if outside current subarray range
98 if (i < Tow || 1 > high) {

99 printf("%s", " "3

100 }

101 else if (i == mid) { // display middle element
102 printf("%3d*", b[i]); // mark middle value
103 }

104 else { // display other elements in subarray
105 printf("%3d ", b[i]);

106 }

107 }

108

109 puts(""); // start new line of output

1o 1}

Fig. 6.19 | Binary search of a sorted array. (Part 3 of 4.)

278 Chapter 6 C Arrays

Enter a number between 0 and 28: 25

Indices:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 2 4 6 8 10 12 14* 16 18 20 22 24 26 28
16 18 20 22* 24 26 28

25 not found

Enter a number between 0 and 28: 8

Indices:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 2 4 6 8 10 12 14* 16 18 20 22 24 26 28

8 found at index 4

Enter a number between 0 and 28: 6

Indices:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 2 4 6 8 10 12 14* 16 18 20 22 24 26 28

6 found at index 3

Fig. 6.19 | Binary search of a sorted array. (Part 4 of 4.)

6.11 Multidimensional Arrays

Arrays in C can have multiple indices. A common use of multidimensional arrays, which
the C standard refers to as multidimensional arrays, is to represent tables of values con-
sisting of information arranged in rows and columns. To identify a particular table element,
we must specify two indices: The firsz (by convention) identifies the element’s 70w and the
second (by convention) identifies the element’s column. Tables or arrays that require two
indices to identify a particular element are called two-dimensional arrays. Multidimen-
sional arrays can have more than two indices.

6.11.1 Illustrating a Double-Subcripted Array

Figure 6.20 illustrates a two-dimensional array, a. The array contains three rows and four
columns, so it’s said to be a 3-by-4 array. In general, an array with 7 rows and 7 columns
is called an m-by-# array.

6.11 Multidimensional Arrays 279

Column 0 Column | Column 2 Column 3
Rowo afO0]1[0] afo0]J[1] af01[2]1 a[01[3]
Rowl a[1]J[0] af[1]1[1]1 af[1]1[21 af11[3]1]

Row2 a[21[0] af2]01]1 al21[2] a[2][3]

L Column index

Row index
Array name

Fig. 6.20 | Two-dimensional array with three rows and four columns.

Every element in array a is identified in Fig. 6.20 by an element name of the form
a[11[j]; ais the name of the array, and i and j are the indices that uniquely identify each
element in a. The names of the elements in row 0 all have a first index of 0; the names of
the elements in column 3 all have a second index of 3.

., Common Programming Error 6.7

| Referencing a two-dimensional array element as alx, y1 instead of a[x1[y] is a logic
error. C interprets alx, y] as alyl (because the comma in this context is treated as a
comma operator), so this programmer error is NOt a syntax error.

6.11.2 Initializing a Double-Subcripted Array

A multidimensional array can be initialized when it’s defined. For example, a two-dimen-
sional array int b[2][2] could be defined and initialized with

int b[2][2] = {{1, 2}, {3, 4}};

The values are grouped by row in braces. The values in the first set of braces initialize row
0 and the values in the second set of braces initialize row 1. So, the values 1 and 2 initialize
elements b[0]1[0] and b[0][1], respectively, and the values 3 and 4 initialize elements
b[11[0] and b[11[1], respectively. If there are not enough initializers for a given row, the
remaining elements of that row are initialized to 0. Thus,

int b[2][2] = {{1}, {3, 4}};

would initialize b[0][0] to 1, b[0][1] to 0, b[1][0] to 3 and b[1][1] to 4. Figure 6.21
demonstrates defining and initializing two-dimensional arrays.

// Fig. 6.21: fig06_21.c
// Initializing multidimensional arrays.
#include <stdio.h>

void printArray(int a[][3]); // function prototype

SNnNh WN -

Fig. 6.21 | Initializing multidimensional arrays. (Part | of 2.)

280 Chapter 6 C Arrays

7 // function main begins program execution
8 1int main(void)

9 {

10 int arrayl[2][3] = {{1, 2, 33}, {4, 5, 6}};
11 puts("Values in arrayl by row are:");
12 printArray(arrayl);

13

14 int array2[2]1[3] = {1, 2, 3, 4, 5};
15 puts("Values 1in array2 by row are:'");
16 printArray(array?2);

17

18 int array3[2]1[3] = {{1, 2}, {4}};

19 puts("Values in array3 by row are:");
20 printArray(array3);

21 }

22

23 // function to output array with two rows and three columns
24 void printArray(int a[][3])

25 {

26 // loop through rows

27 for (size_t i =0; i <= 1; ++i) {

28

29 // output column values

30 for (size_t j = 0; j <= 2; ++j) {
31 printf("%d ", alill[jD);

32 }

33

34 printf("\n"); // start new Tine of output
35 }

36 }

Values 1in arrayl by row are:
123
456
Values 1in array2 by row are:
123
450
Values in array3 by row are:
120
400

Fig. 6.21 | Initializing multidimensional arrays. (Part 2 of 2.)

arrayl Definition

The program defines three arrays of two rows and three columns (six elements each).
The definition of array1 (line 10) provides six initializers in two sublists. The first sublist
initializes 70w O of the array to the values 1, 2 and 3; and the second sublist initializes row
1 of the array to the values 4, 5 and 6.

array?2 Definition

If the braces around each sublist are removed from the array1 initializer list, the compiler
initializes the elements of the first row followed by the elements of the second row. The
definition of array? (line 14) provides five initializers. The initializers are assigned to the

6.11 Multidimensional Arrays 281

first row, then the second row. Any elements that do 7oz have an explicit initializer are ini-
tialized to zero automatically, so array2[1][2] is initialized to 0.

array3 Definition

The definition of array3 (line 18) provides three initializers in two sublists. The sublist
for the first row explicitly initializes the first two elements of the first row to 1 and 2. The
third element is initialized to zero. The sublist for the second row explicitly initializes the
first element to 4. The last two elements are initialized to zero.

printArray Function

The program calls printArray (lines 24-36) to output each array’s elements. The func-
tion definition specifies the array parameter as int a[][3]. In a one-dimensional array pa-
rameter, the array brackets are empty. The first index of a multidimensional array is not
required, but all subsequent indices are required. The compiler uses these indices to deter-
mine the locations in memory of elements in multidimensional arrays. All array elements
are stored consecutively in memory regardless of the number of indices. In a two-dimen-
sional array, the first row is stored in memory followed by the second row.

Providing the index values in a parameter declaration enables the compiler to tell the
function how to locate an element in the array. In a two-dimensional array, each row is
basically a one-dimensional array. To locate an element in a particular row, the compiler
must know how many elements are in each row so that it can skip the proper number of
memory locations when accessing the array. Thus, when accessing a[1][2] in our
example, the compiler knows to skip the three elements of the first row to get to the second
row (row 1). Then, the compiler accesses element 2 of that row.

6.11.3 Setting the Elements in One Row

Many common array manipulations use for iteration statements. For example, the follow-
ing statement sets all the elements in row 2 of array a in Fig. 6.20 to zero:

for (column = 0; column <= 3; ++column) {
al[2][coTumn] = 0;

}

We specified row 2, so the first index is always 2. The Toop varies only the second (column)
index. The preceding for statement is equivalent to the assignment statements:

[Sy |
]

6.11.4 Totaling the Elements in a Two-Dimensional Array

The following nested for statement determines the total of all the elements in array a.

total = 0;
for (row = 0; row <= 2; ++row) {
for (column = 0; column <= 3; ++column) {

total += a[row][column];

}

282 Chapter 6 C Arrays

The for statement totals the elements of the array one row at a time. The outer for state-
ment begins by setting row (i.., the row index) to 0 so that the elements of that row may
be totaled by the inner for statement. The outer for statement then increments row to 1,
so the elements of that row can be totaled. Then, the outer for statement increments row
to 2, so the elements of the third row can be totaled. When the nested for statement ter-
minates, total contains the sum of all the elements in the array a.

6.11.5 Two-Dimensonal Array Manipulations

Figure 6.22 performs several other common array manipulations on a 3-by-4 array stu-
dentGrades using for statements. Each row of the array represents a student and each col-
umn represents a grade on one of the four exams the students took during the semester.
The array manipulations are performed by four functions. Function minimum (lines 39—
56) determines the lowest grade of any student for the semester. Function maximum (lines
59-76) determines the highest grade of any student for the semester. Function average
(lines 79—89) determines a particular student’s semester average. Function printArray
(lines 92-108) outputs the two-dimensional array in a neat, tabular format.

// Fig. 6.22: fig06_22.c

// Two-dimensional array manipulations.
#include <stdio.h>

#define STUDENTS 3

#define EXAMS 4

// function prototypes

int minimum(const 1int grades[][EXAMS], size_t pupils, size_t tests);

int maximum(const int grades[][EXAMS], size_t pupils, size_t tests);

10 double average(const int setOfGrades[], size_t tests);

Il void printArray(const int grades[][EXAMS], size_t pupils, size_t tests);
12

13 // function main begins program execution

14 int main(void)

VoO~NONUND WN -

15 {

16 // initialize student grades for three students (rows)
17 int studentGrades[STUDENTS] [EXAMS] =

18 { {77, 68, 86, 73 1},

19 { 96, 87, 89, 78 1,

20 { 70, 90, 86, 81 } };

21

22 // output array studentGrades

23 puts('The array is:");

24 printArray(studentGrades, STUDENTS, EXAMS);

25

26 // determine smallest and Targest grade values

27 printf("\n\nLowest grade: %d\nHighest grade: %d\n",
28 minimum(studentGrades, STUDENTS, EXAMS),

29 maximum(studentGrades, STUDENTS, EXAMS));

Fig. 6.22 | Two-dimensional array manipulations. (Part | of 3.)

6.11 Multidimensional Arrays 283

30

31 // ca